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Abstract

In the framework of risk assessment in nuclear accident analysis, best-estimate
computer codes, associated to a probabilistic modeling of the uncertain input vari-
ables, are used to estimate safety margins. A first step in such uncertainty quantifi-
cation studies is often to identify the critical configurations (or penalizing, in the
sense of a prescribed safety margin) of several input parameters (called “scenario
inputs”), under the uncertainty on the other input parameters. However, the large
CPU-time cost of most of the computer codes used in nuclear engineering, as the
ones related to thermal-hydraulic accident scenario simulations, involve to develop
highly efficient strategies. This work focuses on machine learning algorithms by
the way of the metamodel-based approach (i.e., a mathematical model which is fit-
ted on a small-size sample of simulations). To achieve it with a very large number
of inputs, a specific and original methodology, called ICSCREAM (Identification
of penalizing Configurations using SCREening And Metamodel), is proposed. The
screening of influential inputs is based on an advanced global sensitivity analysis
tool (HSIC importance measures). A Gaussian process metamodel is then sequen-
tially built and used to estimate, within a Bayesian framework, the conditional
probabilities of exceeding a high-level threshold, according to the scenario inputs.
The efficiency of this methodology is illustrated on two high-dimensional (around
a hundred inputs) thermal-hydraulic industrial cases simulating an accident of pri-
mary coolant loss in a pressurized water reactor. For both use cases, the study
focuses on the peak cladding temperature (PCT) and critical configurations are
defined by exceeding the 90%-quantile of PCT. In both cases, the ICSCREAM
methodology allows to estimate, by using only around one thousand of code sim-
ulations, the impact of the scenario inputs and their critical areas of values.
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1 Introduction
In the framework of risk assessment in nuclear accident analysis, best-estimate com-
puter codes are increasingly used to understand, model and predict physical phenomena
and, ultimately, estimate safety margins. These codes (also known as “numerical sim-
ulators”) usually take a large number of input parameters driving the phenomenon of
interest or related to its physical and numerical modeling. The available information
about some of these parameters is often limited or uncertain. The uncertainties come
mainly from the lack of knowledge about the underlying physics and about the char-
acterization of the input parameters of the model (e.g., due to the lack of experimental
data) [1]. Other additional sources of uncertainty can be considered such as the choice
of a particular accident scenario. All these input parameters, and consequently the
simulator output, are uncertain. In this context, it is essential to take the uncertainties
tainting the results of computer simulations into account [2]. This major step for safety
studies is referred to as “uncertainty quantification of numerical models” [3] in the sta-
tistical community and is called “Best-Estimate Plus Uncertainty” (BEPU) in nuclear
safety analysis [4, 5].

In this work, we focus on the identification of the penalizing configurations (corre-
sponding to critical values of the output) of specific scenario inputs (i.e., defining the
accident scenario considered), under the uncertainty of the other inputs. It is important
to notice that the goal is not to perform a “worst-case” scenario analysis as often en-
countered in common nuclear safety practices. The idea here is to look for the inputs’
domain leading to a high probability level that the physical variable of interest reaches
some large values. Such an approach differs from finding the inputs’ values which lead
to the maximum of the variable of interest (worst-case analysis). In the uncertainty
quantification literature, several families of methods can be found for this particular
analysis: on the one hand, it is called “inversion” or “identification of an excursion set”
[6, 7] when no uncertainty is considered; on the other hand, it is called “robust inver-
sion” [8] if the uncertainties about other inputs are considered. In the present paper,
the proposed methodology rather belongs to the second type of methods. As men-
tioned in [8], the real industrial application tackled in the present paper goes beyond
standard canonical problems (e.g., purely optimization or inversion problems) and thus
implies to develop a dedicated methodology. Our study is motivated and guided by the
“Intermediate Break Loss Of Coolant Accident” (IB-LOCA) safety analysis, based on
the numerical simulation of an accident of primary coolant loss in a pressurized water
reactor [9]. In the present paper, a realistic reactor-scale modeling of an IB-LOCA
is considered [10, 11]. This model, relying on the CATHARE2 code [12], enables to
compute thermal-hydraulic transients with respect to a very high number (compared to
previous simplified studies [13]) of input uncertain parameters.

Standard approaches, related to our objectives and used in the nuclear industry (in
particular on the IB-LOCA case), are for example:

• the inverse uncertainty quantification methods [14, 15, 16] to obtain the proba-
bilistic distributions of some physical model inputs when experimental data are
available,

• the Wilks method [17, 18] to infer high quantiles of the model output variables
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of interest,

• the PLI method [11, 19] to detect the most influential inputs to be penalized
amongst a large number of variables before applying the Wilks method.

• and finally the RIPS (Reduction of the Interval of variation of the Parameters
of the Scenario) method, recently published in [20], aims to characterize the
limiting scenario in a BEPU approach.

In particular, RIPS allows to analyze the high-order (or low-order) quantiles of the
output cumulative distribution function and determine, for each scenario input, the
critical zone within its variation interval. A first issue of this method is that it relies on
a quite subjective visual analysis, but its most important drawback is due to the intrinsic
complexity in the tuning of the method.

Our goal is to provide a more robust and automatic methodology which allows
to reduce the computational cost (in terms of number of code runs) compared to the
RIPS approach. In uncertainty quantification studies, to solve the cost issue, a widely
accepted approach consists in approximating the CPU-time expensive computer mod-
els by CPU-time inexpensive mathematical functions called “metamodels” (or “surro-
gate” models). These metamodels can be based, for instance, on polynomials, neural
networks or Gaussian processes [21]. The metamodel is built from a set of computer
code simulations, and must be as representative as possible of the “true” code in the
variable domain of the uncertain parameters while having good prediction capabilities.
Nowadays, metamodels are extensively used in several engineering fields to solve in-
dustrial issues as it provides a multi-purpose tool [22]: once fitted, the metamodel can
be used, in conjunction with the costly computer code, to perform sensitivity analy-
sis, as well as uncertainty propagation, optimization, or calibration studies see, e.g.,
[23, 24, 25, 26, 27]).

An important issue is that the building process of the metamodel remains complex
in the case of high-dimensional (e.g., typically several tens of inputs) numerical experi-
ments. In order to build a metamodel in a efficient manner in such cases, [13] proposed
a methodology which combines several pre-existing advanced statistical tools: first,
an initial space-filling design of experiments; second, a screening step (which aims at
detecting influential inputs and non-influential ones) in order to reduce the dimension,
and third, a specific building strategy (based on a sequential inclusion of variables) of
a joint Gaussian process metamodel. Then, the resulting joint Gaussian process meta-
model is used to accurately estimate high-order output quantiles. The efficiency of the
methodology has been illustrated on a simplified IB-LOCA use case with 27 inputs and
a total budget of 500 code simulations.

The objectives of the present study are different from those identified in [13]. In the
present paper, the goal is to perform an inversion and thus requires the new proposed
statistical methodology, called ICSCREAM (pronounced “ice-cream”), for “Identifica-
tion of penalizing Configurations using SCREening And Metamodel”. Indeed, finding
the penalizing configurations in input with respect to critical output values (e.g., typ-
ically, a high-order quantile) corresponds to identify specific areas of some specific
inputs, while ignoring the uncertainty tainting the other ones. Moreover, since the
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considered use case is a reactor-scale model of an IB-LOCA, the number of input pa-
rameters is considerably larger than for standard mock-up cases. Parallel to that, the
available simulation budget is fixed (around a thousands simulations). Therefore, a
methodological challenge arises in the metamodel building process.

The paper is organized as follows. In Section 2, the general workflow of the IC-
SCREAM methodology is first detailed. Two different IB-LOCA use cases and their
corresponding datasets are then presented in Section 3. Thereafter, Sections 4 to 6 are
dedicated to each step of the method: their theoretical foundations and their practi-
cal implementation are first detailed before presenting the results obtained on the two
datasets. Section 7 provides some conclusions and prospects of this work. The Ap-
pendix (Section 7) provides an additional illustration of the methodology through an
analytical test case.

2 ICSCREAM: a four-step-based methodology
For the sake of clarity, a few notations are introduced at this stage. Throughout the rest
of this paper, the numerical model (i.e., computer code or simulator) is represented by
the following input-output relationship:

M :
∣∣∣∣ X −→ Y

X 7−→ Y = M (X)
(1)

where the uncertain output variable Y and the d input parameters X = (X1, . . . ,Xd)
>

belong to some measurable spaces respectively denoted by Y and X ⊂ Rd . As part
of the probabilistic approach, the inputs are considered as random variables with prob-
ability distributions denoted by PX on X [28, 29]. Moreover, among the d uncertain
inputs, the dpen scenario inputs (that need to be penalized) are denoted by Xpen ⊂ X.
Notice that no general assumption about independence between the inputs is required
here. Only the Xpen are assumed to be independent from {X \Xpen}, i.e., from the
remaining inputs. Dependency among the Xpen has to be considered conjointly when
computing the conditional probabilities for the identification of penalizing configu-
rations (see Section 6). Then, it is supposed that only input-output observations (or
realizations) of M are available. It is therefore assumed that we have a n-size sample
of inputs and associated outputs denoted by (Xs,Ys) where Xs = {x(1), . . . ,x(n)} with
x(i) =

(
x(i)1 , . . . ,x(i)d

)
denotes the matrix of n-size sample locations (also called the “ex-

perimental design”), and Ys = {y(1), . . . ,y(n)} the corresponding outputs observations
with y(i) = M (x(i)).

To tackle the problem of large input dimension and complex computer codes, the
ICSCREAM methodology combines several statistical techniques which have been
chosen for their relevance regarding the multiple constraints imposed by the problem
of interest (i.e., both the dimensionality and the limited size of the learning sample).
Figure 1 provides a general workflow of the main steps:

• Step 1: Design of experiments. Knowing the variation domain of the input
variables X, a design of n numerical experiments is firstly performed to obtain

4



the learning sample (Xs,Ys). To apply statistical theory and methods, this sample
must be chosen randomly, from Monte Carlo sampling techniques. The simplest
choice is a crude Monte Carlo sample. However, “stratified” sampling tech-
niques (such as Latin Hypercube sampling [30]) can also be used to ensure a
more regular sampling of marginal distributions and a better convergence of sta-
tistical estimators. Another particularly relevant design strategy would be to use
metamodel-based adaptive designs [22]. This solution would allow to select, in
a sequential way, new simulation points (in the inputs’ domain) in order to im-
prove the global accuracy of the metamodel or directly the estimation of penal-
izing configurations. However, this solution cannot be used in our case: we have
to rely on a unique finite batch of random CATHARE simulations (performed at
the beginning of the process). The objective is to provide an operational tool for
the engineer without any extra interfacing with the simulation code and which is
able to deal with a constrained simulation budget.

• Step 2: Preliminary screening and ranking with global and target HSIC
measures. From the learning sample, a screening analysis is performed via
statistical independence tests based on Hilbert-Schmidt Independence Criterion
(HSIC) measures [31]. For this, HSIC are considered in global and target ver-
sions, “target” referring here to the area where the output exceeds a given critical
value (i.e., a threshold). From the results of HSIC and target HSIC-based tests,
the primary influential inputs (PII) and denoted XPII are identified. These PII are
the most influential inputs regarding the output variability and can be ranked by
decreasing influence. Another set of inputs of lesser (i.e., secondary) influence
is gathered in XSII. Finally, all the remaining inputs are considered as global
stochastic (i.e., unknown) inputs, denoted by Xε .

Unlike in a previous work [13], HSIC are also used here in a goal-oriented ver-
sion [32] to tackle the objective of conditional probability estimation. Moreover,
statistical independence tests based on HSIC are used to ensure a more rigorous
interpretation in terms of ranking and screening, while taking into account the
estimation error related to the limited sample size. Both global and target HSIC
must then be combined into aggregated tests to provide a unique screening and
ranking.

• Step 3: Building and validation of Gaussian process (Gp) metamodel. From
the learning sample, a Gp metamodel is built to fit the simulator output Y , taking
advantage of the results provided by Step 2. More precisely, one considers the
ordered explanatory inputs Xexp of the Gp metamodel. Basically, they consist
in the XPII to which we add the inputs that have to be penalized (if not already
selected in XPII): Xexp = {XPII ∪Xpen}. Note that the XSII are also included
as explanatory variables but in a coarser way. Finally, the residual effect of
the neglected inputs, merged into Xε , is captured using an additional noise ef-
fect. Concerning the estimation of all the Gp hyperparameters, similarly to [13],
a sequential process (which relies on the ranking deduced from the preliminary
screening step) is used. More precisely, the information provided by HSIC-based
tests is adapted in order to address the issue of the large input dimension. The
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inputs of lesser influence XSII, previously neglected in [13], are now injected
at the end of the sequential process to reduce the risk of mis-selection (which
is common with such sparse data), while limiting the training efforts of the Gp
metamodel. Finally, the accuracy and prediction capabilities of the Gp meta-
model are controlled, either on a test sample (if available) or by cross-validation
based on the learning sample.

• Step 4: Use of the metamodel for the identification of penalizing configura-
tions. Once built, the Gp can be evaluated in prediction in a very intensive way
(e.g., from 105 to 106 evaluations). Usually, a Gp metamodel can be used for a
quantitative sensitivity analysis [33] based on the output variance decomposition
(e.g., estimation of Sobol’ indices), as well as uncertainty propagation (e.g., es-
timation of high-/low-order quantiles or probabilities), leading in all cases to a
large gain of computation time (see [13] for an example in nuclear engineering).
Here, the Gp metamodel is used to estimate, within a Bayesian framework, the
conditional probabilities of exceeding the critical quantile value, as a function
of all the inputs that need to be penalized and ignoring the other uncertain ones.
Thus, if the penalized inputs are independent, one will only have to compute a
conditional probability per input and, in the case of dependent penalized inputs,
this probability will turn into a probability hypersurface.

Again, the final purpose of the present paper differs from the one in [13]: some
modifications in the methodology were required, such as the use of target HSIC
measures. Moreover, as it will be described in the next section, the datasets
treated in the present work go far beyond by considering much more complex
reactor-scale datasets with around hundred inputs (in contrast to the simplified
mock-up use case with less than thirty inputs).

As stated before, the motivations for such a methodology are, before anything else,
driven by an industrial application illustrated by two use cases described in the follow-
ing section. However, it is important to notice that this methodology follows a logical
modular sequence which makes it rather generic (in the sense that it can be applied to
a large class of problems). To emphasize this, an illustration through an analytical test
case is provided in Appendix (Section 7).

3 Description of the thermal-hydraulic use cases and
datasets

In support of regulatory work and nuclear power plant design and operation, safety
analysis considers the so-called “loss of coolant accident” which takes into account
a double-ended guillotine break with a specific size piping rupture. More precisely,
one considers here an intermediate break loss of coolant accident (IB-LOCA) [9] in
a three-loops pressurized water reactor from the French fleet1. The output variable
of interest is the maximal peak cladding temperature (PCT) of the hot rod during the

1The input data considered for this case, and thus the obtained PCT, do not correspond to actual industrial
values.
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Figure 1: General workflow of the ICSCREAM methodology.
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accident transient. The reactor coolant system minimum mass inventory and the PCT
are obtained shortly after the beginning of the accumulators’ injection [10]. The IB-
LOCA transients are simulated using the thermal-hydraulic system code (two phase
flow six equations) CATHARE2 [12], jointly developed by CEA, EDF, Framatome
and IRSN. Around a hundred inputs (vector X) are considered as uncertain and can be
split into three different types [11]:

• Type 1: the boundary and initial conditions whose probability distributions are
supposed to be known (as uniform or normal distributions);

• Type 2: the model parameters (e.g., models related to two-phase flow hydraulics,
models associated to heat transfer and models describing the clad behavior).
Their distributions can be obtained from experimental data, expert knowledge
or recovered by assimilation of experimental databases [1]. This leads to uni-
form, log-uniform, normal or log-normal distributions;

• Type 3: the scenario parameters (see their description below) which cover some
variability between minimal m and maximal M bounds (they follow a uniform
distribution that will be noted U [m,M] in the following).

All the inputs of types 1 and 2 are independent. Their detailed list, as well as their
probability distribution and range of variations, are not given due to industrial confiden-
tiality. The scenario inputs (type 3) are independent with those of the two other groups
but some dependency might exist among them. Usually, the inputs corresponding to
type 3 have to be taken at their worst-case values (corresponding to the maximal value
which can be reached by the PCT) for safety demonstration [10, 20, 11]. In practice,
these worst-case values are unknown and only a domain of variation of each input is
given. Thus, the idea is to find the penalizing values for these scenario inputs.

The following use cases are considered:

• Use-case #1 which corresponds to dataset IB-LOCA1 with d = 96 uncertain in-
puts, including dpen = 2 inputs which have to be penalized: the size of the break,
denoted by X92 in the dataset (X92 ∼U [3,4.2] inches), and the stopping time of
the primary pumps, X94. X94 follows a uniform distribution with a range of vari-
ation depending on the size of the break (globally included in [500,1200] s). It is
a small IB-LOCA case without “loss of offsite power” (LOOP) including a late
main coolant pump coast down;

• Use-case #2 which corresponds to dataset IB-LOCA2 with d = 97 uncertain in-
puts, including dpen = 10 independent scenario inputs: hot rod peaking factor
elevation (X1 ∼ U [2.4,3.2] m), hot rod burn-up (X14 ∼ U [515,59000] MWj/t),
discharge line accumulator of the intact loop (X34 ∼ U [800,1900] m−4), dis-
charge line accumulator of the broken loop (X35 ∼ U [800,1900] m−4), liquid
accumulator enthalpy (X36 ∼U [33544,213105] J/kg), temperature of safety in-
jection (X90∼U [7,50] ◦C), weight factor on flow rate of safety injection 1 (X91∼
U [−1,1]), tube plugging of steam generator of the intact loop (X92 ∼U [0,0.09]),
weight factor on flow rate of the emergency feedwater system of steam genera-
tor (X93 ∼U [−1,1]), temperature of the emergency feedwater system of steam
generator (X94 ∼U [7,55] ◦C). It is a 15′′ IB-LOCA case with LOOP.
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Note that the numbering of inputs is not the same for both use cases. Monte Carlo sam-
ples of n1 = 889 and n2 = 1000 CATHARE2 simulations are available for IB-LOCA1
and IB-LOCA2 use cases respectively. For both, the inputs are drawn according to their
prior probability distributions. The histograms of the obtained values for the output of
interest, namely the PCT, are given in Figure 2 (temperature is in ◦C). A kernel density
estimation plot [34] is also added to provide a graphical illustration of the probability
density function. Note that the number n of simulations is a compromise between the
CPU time required for each simulation and the number of inputs. For uncertainty prop-
agation and metamodel-building purpose, some rules of thumb propose to choose n at
least as large as ten times the input dimension d [35, 36].

Figure 2: Histogram of the PCT from the learning sample for IB-LOCA1 (left) and IB-
LOCA2 (right) datasets. The estimated 90%-quantiles are indicated by a black dotted
line.

For the sake of clarity, one reminds that the β -order quantile (or β -quantile) is
defined by qβ = inf{y ∈ R | β ≤ FY (y)}. From the learning sample, the empirical

90%-quantile of PCT is estimated to q̂(1)0.9 = 673.18◦C (resp. q̂(2)0.9 = 671.85◦C) for IB-
LOCA1 (resp. IB-LOCA2). As aforementioned, the ICSCREAM methodology aims
to identify the values of the inputs Xpen which yield to a high probability of exceeding
this quantile. Figure 3 shows the convergence plots of the estimated empirical quantile,
from bootstrap method (y-axes are scaled to the range of variation of PCT). In addition,
the coefficients of variation of q̂0.9 are estimated to be less than 1% (0.76% and 0.38%
for IB-LOCA1 and IB-LOCA2, respectively). The convergence of other statistics of
PCT distribution is also verified with a coefficient of variation lower than 1% for the
mean and around 2% for the standard deviation.

To illustrate the complexity of fitting the output according to such a large number
of input, some scatter plots of the PCT (for IB-LOCA2 dataset) with respect to some
scenario inputs are displayed in Figure 4. In this case, only one scenario input, namely
X14 (hot rod burn-up), seems to have a clearly detectable influence on the PCT.
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Figure 3: Convergence plots of the empirical estimator of 90%-quantile, according to
the learning sample size n, for IB-LOCA1 (left) and IB-LOCA2 (right).

Figure 4: IB-LOCA2: scatter plots of the learning sample with local polynomial re-
gression of the PCT according to several scenario inputs.

4 Step 2: Screening and ranking with HSIC-based in-
dependence tests

4.1 Theoretical and methodological details
An initial screening is performed directly from the learning sample in order to identify
the primary and secondary influential inputs (resp. XPII and XSII in Figure 1). The
objective is twofold: first, screening the inputs to reduce the dimension before the
metamodeling step and second, ranking them by decreasing order of influence. To
achieve it, we use the HSIC importance measures introduced by [37] and theoretically
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built upon cross-covariance operators in reproducing kernel Hilbert spaces (RKHS).
In a nutshell, the underlying idea of HSIC measures is to capture the influence of an
input Xi on the output Y through the measure of their statistical dependence: the more
“correlated” (in a specific sense that will be explained further) the two variables are,
the more influential Xi is. As highlighted by [38] or [31], HSIC measures show many
advantages for global sensitivity analysis purposes [33]. Some of them are briefly
recalled hereafter. First, HSIC amounts to considering covariance between “feature”
functions (or transformations) applied to each input-output couple of variables (i.e.,
an input Xi and the output Y ). The set of candidate functions (possibly nonlinear)
which can be applied is defined by a functional space and an associated kernel. Such
a space can be of infinite dimension and thus allows to capture a very broad spectrum
of forms of dependency between Xi and Y . The HSIC, which is defined as the Hilbert-
Schmidt (HS) norm of the cross-covariance operator (denoted by COV(·)), somehow
“summarizes” the set of covariances between feature functions:

HSIC(Xi,Y ) = ||COVXiY ||HS = ∑
l,m
|COV(ul(Xi),vm(Y ))|2,

where (ul)l≥0 and (vm)m≥0 are orthonormal bases of the RKHS associated to Xi and Y
respectively.

Furthermore, the so-called “kernel trick” allows to get rid of an explicit expression
of the features (see [39] for more details). Thus, HSIC can be directly expressed as a
linear combination of expected values of kernels and estimated in a very simple way at
rather low cost (typically, a few hundred simulations). By denoting ki and k the kernels
of the two RKHS respectively associated to Xi and Y , it can be shown (see [39]) that
the HSIC measure can be easily estimated by:

ĤSIC(Xi,Y ) =
1
n2 Tr(LiHLH), (2)

where Tr(·) is the trace operator, Li and L are two Gram matrices defined by Li =

(ki(X
(l)
i ,X (m)

i ))1≤l,m≤n and L=(k(Y (l),Y (m)))1≤l,m≤n with (X (m)
i ,Y (m))1≤m≤n a n-sample

of (Xi,Y ), and H = (δlm−1/n)1≤l,m≤n with δlm the Kronecker operator.
Another key aspect relates to the choice of kernels. Characteristic kernels (such

as, among others, the Gaussian one), allow to fully characterize the independence
between the input Xi and the output Y with HSIC. This leads to the following fun-
damental property: the nullity of HSIC is equivalent to independence between Xi
and Y . Therefore, one can build dedicated statistical independence tests for screen-
ing purposes [31]. The Gaussian kernel, widely used for real variables, is defined by
`λ (z,z′) = exp

(
−λ

2 (z− z′)2
)

and parametrized by the bandwidth parameter λ , often

set at λ = 1/σ2
z with σ2

z the empirical variance of the sample of Z.
Thus, for a given input Xi, statistical HSIC-based tests aim at testing the null hy-

pothesis “H (i)
0 : Xi and Y are independent”, against its alternative “H (i)

1 : Xi and Y are
dependent”. The significance level (i.e., the probability of rejecting the null hypothesis
H0 when it is true) of this test is hereinafter noted αtest and usually set at 5% or 10%.
Depending on the size n of the considered sample, several versions of HSIC-based tests

11



are available: asymptotic versions (i.e., for large n) based on an approximation with a
Gamma law [40], spectral extensions and permutation-based versions [31] or adaptive
strategies [41] for non-asymptotic cases (i.e., small n). The p-value is the probability
of obtaining HSIC values either equal to, or larger than, the observed HSIC (estimated
from the learning sample) assuming that H0 true (i.e., that Xi and Y are independent).
Such a p-value is used to decide whether to reject (or not) the null hypothesis. Beyond
the screening task, the p-value of independence tests can be quantitatively interpreted
for ranking the PII, since it can be viewed as a “margin” from independence. The lower
the p-value, the stronger H

(i)
0 is rejected and the higher the influence of Xi.

Furthermore, remember that the final objective of ICSCREAM is to identify the
penalizing configurations and, more precisely, to accurately identify the critical input
areas where the PCT exceeds q̂0.9 (i.e., Y > q̂0.9). Consequently, we consider an addi-
tional “target” sensitivity analysis based on so-called “target HSIC” (T-HSIC) indices
[32]. Applied here, T-HSIC and associated independence tests aim at measuring the in-
fluence of an input Xi over the occurrence of the event {Y > q̂0.9}. T-HSIC is built with
specific kernels and a weight function can be used in order to cope with the possible
loss of information around the threshold (see [32] for further details).

Finally, both HSIC and T-HSIC tests’ results are aggregated to extract a unique
screening and ranking: heuristic choices [42] or more robust alternatives (e.g., Bon-
ferroni’s correction, p-values combination as inspired from [43]) can be used. More
details on Step 2 of the ICSCREAM methodology are given in [42].

4.2 Application on IB-LOCA uses-cases
From the learning sample of the two IB-LOCA use cases, HSIC-independence tests are
applied with a permutation-based approach for the estimation of p-values. The num-
ber of permutations is optimized using the algorithms proposed by [41]. The results
are given in Figures 5 and 6. They illustrate the screening process based on p-values:
variables whose p-values are below the level αtest = 0.05 correspond to influential vari-
ables (red dots). In both use cases, a little bit more than twenty inputs are identified as
influential (i.e., p-values < αtest) during the screening step following the aggregation of
global and target HSIC-based tests. About five additional inputs of lesser influence are
added in XSII (p-values in ]αtest;2αtest]).

Concerning the ranking now, for IB-LOCA1, the two inputs to be penalized are the
most influential: the stopping time of primary pumps (X94) being the most influential
one, followed by the break size (X92). Then five other inputs are strongly influential,
namely the upper plenum and core interfacial friction, core interfacial friction, the hot
spot for the hot rod and two inputs relative to accumulators. A group of thirteen other
variables of lower influence is also selected by global HSIC-tests. Similar results are
obtained with T-HSIC-based tests, except that two additional inputs, namely the dipha-
sic degradation law of pumps and the residual power, are selected as very influential.

For IB-LOCA2, a hard core of around sixteen variables are identified by all the tests
with zero p-values. The most influential are the burn-up of the hot rod (X14), the heat
transfer coefficient of the wall-steam exchange of the hot rod (X46) and the bubbly-slug
in the core during blowdown phase, related to the interfacial friction (X80). To these
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sixteen variables, five variables are added (p-values between 0 and 0.05). Regarding
the final objective of penalizing the ten scenario parameters, only two of them, namely
X14 and, with a lesser influence, the liquid accumulator enthalpy (X36), are part of
the inputs selected by global and target sensitivity analysis. No dependency between
the PCT and one of the eight other scenario parameters is detected. Finally, seven
additional inputs are added in XSII.

Note that some convergence studies (with respect to the sample size) not presented
here show that the total number of inputs in {XPII ∪XSII} is relatively stable: inputs
in XSII passing through the group of XPII as n (and so, the detection capability of the
tests) increases. This suggests the gradual and ongoing convergence of the method, as
well as its robustness. It also highlights the interest of considering this group of XSII
when screening results are not converged yet.

(a) Global-SA-oriented screening. (b) Target-SA-oriented screening.

Figure 5: IB-LOCA1 use case: p-values of HSIC and T-HSIC-based independence
tests computed from the learning sample. The level αtest = 5% is represented in black
dotted line.

5 Step 3: Gaussian process metamodeling

5.1 Parametric choices for the Gaussian process and estimation of
the hyperparameters

The second step of the ICSCREAM methodology consists in building a metamodel,
whose aim is to fit the simulator output Y (here, the PCT), based on the learning sample
(Xs,Ys). To do so, we use a similar approach than the one used in [13], based on an
homoscedastic (non-interpolating) Gp metamodel. The reader can refer to [44] for a
detailed review about Gp metamodel.

As introduced in Section 2, the inputs variables are divided into three groups at the
end of Step 2:

• the ordered explanatory inputs Xexp: this group is made up of the XPII to which
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(a) Global-SA-oriented screening. (b) Target-SA-oriented screening.

Figure 6: IB-LOCA2 use case: p-values of HSIC and T-HSIC-based independence
tests computed from the learning sample. The level αtest = 5% is represented in black
dotted line.

the inputs to be penalized Xpen are added (if not selected in XPII yet). In this
last case, inputs to be penalized are added at the end, in an arbitrary order, or
guided by expert judgment on their supposed importance. We obtain Xexp =
{XPII∪Xpen};

• a second group of inputs XSII of much less influence;

• the remaining and neglected inputs merged into Xε with Xε = {X \ {Xexp ∪
XSII}}.

The output is thus redefined by Y = M ({Xexp∪XSII},Xε) and the metamodeling
process is focused on fitting the random variable Y |{Xexp∪XSII}2. In other words, only
the inputs in {Xexp ∪XSII} are considered as the explanatory inputs of the Gp. Basi-
cally, the Gp is built to approximate the expected value E(Y |{Xexp∪XSII}). The resid-
ual effect of the other inputs (merged into Xε ) is captured using an additional “nugget”
effect. Borrowed from geostatistics, a nugget effect assumes an additive white noise
effect and relaxes the interpolation property of the Gp metamodel. It can be assumed
to be either constant (homoscedastic) or dependent on the variables (heteroscedastic).
Note that contrary to [13], a simple Gp metamodel with an homoscedastic nugget ef-
fect is estimated, since fitting a joint Gp with heteroscedastic nugget is neither relevant
nor realistic given the high dimensionality of the problem and the rather small sample
size. Concerning the parametric choices for the Gp, a constant trend or a one-degree
polynomial with a selection algorithm (e.g., the Lasso algorithm [45]) is considered.
Moreover, a stationary anisotropic Matérn 5/2 tensorized covariance function is used
for the inputs in XPII while XSII are joint in a stationary isotropic Matérn 5/2 covari-
ance function (still tensorized with the one of XPII).

2Y |{Xexp ∪XSII} (i.e., Y knowing {Xexp ∪XSII}) is still a random variable as its value depends on the
uncontrollable random vector Xε .
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Note that, in order to have a robust and sufficiently automated methodology, some
parameters should be fixed. For instance, we recommend in practice to use a Matérn
covariance function which is quiet popular in the machine learning community as it
covers a large spectrum of applications. Moreover, the resulting differentiability prop-
erties of the Gp metamodel (one or two times mean-square differentiable for Matérn
3/2 and 5/2, respectively) is a reasonable compromise given the high-dimensional in-
put space, the sparsity of data and the potentially low regularity of the code output.
Anyway, various covariance functions can be tested in order to select the best one from
the analysis of validation metrics (as done here).

All the Gp hyperparameters (i.e., covariance parameters) are estimated by maxi-
mum likelihood estimation on the learning sample. More precisely, a sequential pro-
cess which relies on the ranking deduced from the screening step is used (see [46, 36,
13]). To summarize, at each iteration j, one more input of Xexp is added to the co-
variance function, following the order of inputs in Xexp. The ( j−1) hyperparameters’
values estimated at the ( j−1)-th iteration are used as starting points for the optimiza-
tion algorithm for the ( j− 1) first hyperparameters. Once all the inputs of Xexp have
been included, the last iteration consists in adding XSII through the isotropic covariance
function (see [13] for the detailed sequential building process).

Once the Gp hyperparameters are estimated, the Gp is conditioned by the observa-
tions of the learning sample to obtain the so-called “Gp metamodel”, i.e., the resulting
conditional random process, which is still a Gp, denoted by YGp({Xexp ∪XSII}). For
each unobserved prediction point, it is therefore fully characterized by its mean and
variance (see [44] for an explicit expression of Gp mean and Gp covariance). The con-
ditional mean, denoted by ŶGp({Xexp∪XSII}), is used as a predictor. The conditional
variance, denoted by MSE[ŶGp({Xexp∪XSII})], is also the mean squared error (MSE)
of the predictor. This prediction variance is used to build a confidence interval around
the prediction. Covariance between predictions is also available via the conditional
covariance.

5.2 Validation of the Gp metamodel
The accuracy and prediction capabilities of the Gp metamodel are assessed by “K-fold
cross-validation” [47], given the limited budget of simulations. Note that the crite-
ria presented in the following can obviously be calculated on a test basis if available.
However, for the considered applications, no test sample is available. For K-fold cross-
validation, rule-of-thumb methods suggest to fix large values of K (typically 5, 10 or
20) since it is usually preferable to exploit a larger number of simulations for training
purposes, at the expense of a loss of generalization of the estimated errors.

First, to quantify the accuracy of predictor, one can use the predictivity coefficient
Q2:

Q2 = 1−
∑

n
i=1

(
y(i)− Ŷ (i)

Gp,−i

)2

∑
n
i=1
(
y(i)− 1

n ∑
n
i=1 y(i)

)2 (3)

where y(i) and Ŷ (i)
Gp,−i are respectively the i-th observation of the learning sample and

the corresponding prediction of the Gp metamodel built without y(i). Q2 corresponds
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to the coefficient of determination in prediction, computed by cross-validation on the
learning sample. The closer to one the Q2, the better the accuracy of the metamodel.
A plot of predicted values against observed values (Ŷ (i) vs. y(i)) or a quantile-quantile
plot can also be drawn. In the purpose of identifying the input area yielding to critical
configurations, we also compute the rate of good prediction of {Y > q̂0.9}.

Second, the quality of the Gp prediction intervals should also be evaluated (intervals
built from the prediction variance). For this, the histogram of the predicted standardized
residuals can be plotted (a standard Gaussian distribution should be observed). The
Predictive Variance Adequacy (PVA) is also computed: this criterion defined by [48],
and more recently used in [49], assesses whether the prediction errors are of the same
order of the prediction variances or not:

PVA = log

1
n

n

∑
i=1

∑
n
i=1

(
y(i)− Ŷ (i)

Gp,−i

)2

MSE(Ŷ (i)
Gp,−i)


 . (4)

The smaller the PVA, the more reliable the prediction intervals. For example, a PVA
around 0.2 (respectively 0.7) corresponds to prediction variances around 20% (respec-
tively two times) too large or too small with respect to the prediction errors.

Finally, we consider a graphical tool introduced by [50]. This tool enables to com-
pare the Gp prediction intervals of level α with respect to the proportions of observa-
tions that actually lie within these intervals. These proportions (i.e., the “observed”
confidence intervals) can be visualized against the α-theoretical prediction intervals,
for different values of α in [0,1]. By definition, the more the points are located around
the identity line, the better the adequacy is. This plot will be called “α-α plot” in the
following. For the interested reader, a detailed interpretation of these numerous vali-
dation criteria of the Gp metamodel (as well as additional ones, not mentioned in the
present work) can be found in [49].

5.3 Application on IB-LOCA uses-cases
Some of the aforementioned diagnostic metrics have been computed with K = 10 folds
for the cross-validation procedure and are plotted in Figures 7 and 8 for the two IB-
LOCA use cases. In both cases, the predictivity coefficient Q2 is around 0.8 which
can be considered as satisfactory and reasonable regarding both the final objective of
the study (i.e., the uncertainty propagation) and the multiple constraints which have to
be handled (limited size of the learning sample, high dimension in input, strong non-
linearity of the model). Note that, in the case of poor predictivity performance, the
use of Gp-based iterative enrichment strategies can be relevant to add supplementary
code simulations. Again, such a strategy is not possible in the context of the present
study. Thus, for the two use cases, less than 20% of the output variability remains
not explained by the Gp metamodel. More precisely, this includes both the inaccuracy
of the Gp and the loss of information attributable to the inputs in Xε which have not
been selected in the metamodel building process. Another possible reason for the part
of unexplained output variability can be the behavior of the code itself. For instance,
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such a locally irregular behavior can be due to physical bifurcations or threshold ef-
fects. In our case, a convergence study, for which all the variables in the model were
added sequentially (i.e., even the Xε ), has been performed. Such a study, not presented
here for the sake of brevity, showed that no improvement of the predictivity has been
detected. It is therefore reasonable to assume that the code behavior also plays a role
in this remaining output variability. Finally, high rates of good classification for crit-
ical configurations are also obtained: 94% and 93% for IB-LOCA1 and IB-LOCA2,
respectively.

Note that building the Gp directly in dimension d = 97, without variable selec-
tion and sequential inclusion processes, leads to a poor estimation of the Gp (typically,
the optimization procedure involved in the estimation of the Gp hyperparameters often
fails) and yields to a Gp with a poor predictivity. This illustrates the practical interest
of the proposed methodology. For comparison purposes, other metamodels such as ro-
bust linear regression (e.g., elastic net regularization of [51]), support vector machines
[52] or regression trees [53] were tested. All of them yield poor predictivity with Q2

lower than 0.5. Only a generalized additive model based on smoothing splines, namely
the “Adaptive COmponent Selection and Shrinkage Operator” (ACOSSO [54]), with
a Q2 around 0.7, showed competitive results (for IB-LOCA2 only) with respect to the
proposed Gp-based approach.

Concerning the quality of predictive variance and confidence intervals, low PVA
values (0.15 and 0.02 for IB-LOCA1 and IB-LOCA2, respectively) and α-α plots show
that the Gp metamodel yields accurate confidence intervals in prediction, although be-
ing sometimes too conservative for central values of α . The Gp metamodel provides a
reliable prediction error: the conditional distribution of Gp is accurate. In conclusion,
the Gp metamodel can be confidently used in a Bayesian framework for uncertainty
propagation in the next step.

(a) Predicted vs. observed values. (b) α-α plot.

Figure 7: IB-LOCA1 use case: diagnostics of Gp performance.
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(a) Predicted vs. observed values. (b) α-α plot.

Figure 8: IB-LOCA2 use case: diagnostics of Gp performance.

6 Step 4: Application for the identification of penaliz-
ing configurations

6.1 Definition and computation of conditional probabilities
The final goal of the ICSCREAM methodology is to identify the penalizing configura-
tions (i.e., corresponding to a maximal PCT) of the inputs of interest Xpen, under the
uncertainty of the other inputs. To do so, one can define, for any set of possible values
of Xpen, the probability of exceeding the critical value q̂0.9. This conditional proba-
bility can be estimated for a given value xpen ∈Xpen with the Gp-Bayesian approach
by:

P̂(xpen) = P[YGp(Xexp,XSII)> q̂0.9 |Xpen = xpen]

= 1−E[1YGp(Xexp,XSII)≤q̂0.9 |Xpen = xpen]

= 1−E[1YGp(X̃exp,Xpen)≤q̂0.9
|Xpen = xpen]

= 1−E
[
E
[
1YGp(X̃exp,Xpen)≤q̂0.9

|X̃exp

]
| Xpen = xpen

]
= 1−

∫
X̃exp

Φ

 q̂0.9− ŶGp(x̃exp,xpen)√
MSE[ŶGp(x̃exp,xpen)]

dPX̃exp
(x̃exp) (5)

where X̃exp = {Xexp∪XSII}\Xpen denotes the Gp inputs deprived of Xpen, X̃exp their
domain of variation, dPX̃exp

their probability density function, and Φ(·) the cumulative
distribution function of the standard Gaussian distribution. Note that the independence
between X̃exp and Xpen is required and used to obtain the fourth line from the third one
in Eq. (5). In the so-called “Gp-Bayesian” approach, the predictive distribution of the
Gp is entirely propagated (including the Gp error prediction); it is strictly equivalent
to a calculation by conditional simulations. This approach therefore differs from a
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“plug-in” approach where only the Gp predictor (i.e., the Gp mean) is considered. A
comparison between the Gp-Bayesian and plug-in approaches is given for example in
[13] (for a quantile estimation problem).

In practice, this conditional probability can be computed for the different values
of each input in Xpen, as well as for any subgroup of l inputs (l = 2, . . . ,dim(Xpen)).
Thus, it results in a one (or l)-dimensional function.

6.2 Results for IB-LOCA use cases
The conditional probabilities given by Eq. ( 5) are, in practice, computed by inten-
sive crude Monte Carlo Gp-based simulations with respect to the couple (X92,X94) in
IB-LOCA1 and for each input of Xpen in IB-LOCA2. Here, we use 2× 104 Monte
Carlo simulations to estimate each probability. Note that, for a target probability to be
estimated close to 0.1, such a budget corresponds to a coefficient of variation of 2% ap-
proximately. Consequently, it is more than enough (especially considering the accuracy
of the metamodel itself). The satisfactory accuracy of the estimated probabilities can
also be verified by a convergence graph as the number of Monte Carlo Gp simulations
increases. The estimated probabilities are given in Figures 9 and 10, respectively.

For the IB-LOCA1 use case, the analysis of conditional probabilities reveals the
strong interaction of the two scenario inputs (X92 and X94) in the occurrence of critical
configurations. The worst cases (i.e., where the probability reaches maximal values)
correspond to medium values of both inputs. Conditionally to a given break size (X92),
the probability function according to the stopping time of primary pumps (X94) has a
bell shape that reaches its maximum value for a stopping time which decreases linearly
as the break size increases. Note that the worst configuration is obtained for a break size
equal to 3.57 inches and a stopping time of the primary pumps of about 907.8 seconds,
which leads to a probability of exceeding the quantile q̂0.9 = 673.18◦C estimated at
0.55. These results can be enlightened by an analysis of the physical phenomenon.
In a nutshell, the correlation between these two scenario inputs drives the degradation
of the water inventory. The smaller the break size, the longer the pump will have to
run for the same inventory degradation. As for the distinct left and right limits on the
domain, they can also be explained. On the one hand, if X92 < 3.3 inches, meaning that
the break size is rather small, the water inventory does not degrade too much (whatever
the primary pump does). This leads to a slow LOCA which can be contained by the
protection systems which have enough time to intervene (hence, the net border). On
the other hand, when the break size increases too much, the break tends to be prevailing
and reduces the impact of the stop time of the primary pumps (hence, the fading area).

For the IB-LOCA2 use case, amongst the ten scenario inputs, only two are sig-
nificantly influential on the probability of exceeding 671.85◦C. The enthalpy of the
liquid accumulator (X36) has a moderate linear effect: the probability is increased by
0.03 for the lower bound of X36 (penalizing value) and decreased by the same amount
for the upper bound. This effect is consistent with the physical knowledge related to
the impact of this input on the condensation effect during the safety injection. More
interestingly, the strong, complex and non-monotonic effect of the burn-up is clearly
illustrated: the probability of PCT is maximal for the lower bound (P̂(x14,min) = 0.175)
then decreases before increasing to reach a local maximum value around x14 ' 29000
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Figure 9: IB-LOCA1 use case: conditional probability P̂(X92,X94) of exceeding q̂0.9,
estimated from the Gp, with both surface and contour plot representations.

MWd/t, almost as high as the global maximum value (the variation range of this input
is [515;59000]). It then decreases prior to increasing until another smaller peak, and
then falls to a zero probability of exceeding q̂0.9, for the highest values of X14. The
burn-up, which is an integral measure of how much energy is extracted from a primary
nuclear fuel source, describes the fuel depletion as it supplies energy. When the fuel
is too depleted (values of burn-up ≥ 50000 MWd/t), the residual power significantly
decreases as the burn-up increases, yielding to low PCT values. On the contrary, for
lower depletion rate (X14 < 50000 MWd/t), the relationship between the burn-up and
PCT is much more complex since this input controls a large number of other physical
quantities related to the life of the hot rod. Therefore, the implication of the burn-up in
several physical sub-models (as the pressure inside the cladding, the initial temperature
of the fuel and the neutronic data), constituent of the global thermal-hydraulic model,
explains the form of P̂(X14): the first small bumps are due to fluctuations in fuel tem-
perature over the life of the rod, while the large drop at the end is due to the decay of
the neutronic data at the end of the rod lifetime.

From a statistical methodology point of view, it is really interesting to clearly high-
light some behavior, which are known by physicists, but impossible to detect on the ini-
tial dataset by simple visualization (cf. scatter plots of Figure 4). The results obtained
with the proposed ICSCREAM methodology are therefore consistent with physical
knowledge and even go beyond this. Indeed, they enable to quantify the impact on the
probability but also to precisely identify and justify the penalizing areas in input.

7 Conclusion and prospects
In the framework of risk assessment in nuclear accident analysis, it is essential to quan-
titatively assess the uncertainties tainting the results of best-estimate computer codes.
Beyond the usual uncertainty propagation step, this paper has focused on identifying
the penalizing configurations of some specific inputs (the scenario ones), under the un-
certainty of the other inputs. This methodology, called ICSCREAM, was motivated by
a study at the reactor-scale of an IB-LOCA scenario in a pressurized water reactor, with
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Figure 10: IB-LOCA2 use case: conditional probabilities of exceeding q̂0.9 for the
ten inputs to be penalized Xpen, estimated from the Gp on their respective ranges of
variation [Xmin;Xmax]. The mean probability P[Y (Xexp,XSII) > q̂0.9] is also estimated
to 0.118 and plotted in black dotted line.

the thermal-hydraulic CATHARE2 code. In the considered use cases, around a hun-
dred scalar inputs are uncertain and the penalizing values of two or ten of them must
be identified. The output variable of interest is the peak cladding temperature (PCT)
during the accident transient. The critical configurations are defined by PCT exceeding
its quantile of probability 0.9. The fidelity and complexity of the numerical modeling,
the limited budget of simulation and the very large number of uncertain inputs are real
challenges that led to the development of a sophisticated and robust methodology based
on advanced statistical tools.

Applied from a single Monte Carlo sample of CATHARE2 simulations, the IC-
SCREAM methodology judiciously combines a step of sensitivity analysis to identify
and rank the main influential inputs and to reduce the dimension, with a specific build-
ing procedure (based on a sequential inclusion of variables) of a Gaussian process (Gp)
metamodel. The sensitivity analysis step relies on new statistical independence tests
which aggregate information of global and target Hilbert-Schmidt independence crite-
rion (HSIC) measures. From the sensitivity analysis results, the inputs are taken into
account in a more or less fine way in the Gp metamodel, according to their supposed
influence. The non-selected inputs are integrated in the variance of the Gp predic-
tion. The robustness of the metamodel is therefore enhanced and its building is made
possible in such a high-dimensional problem. Once built, the accuracy and prediction
capabilities of the Gp metamodel are assessed: several graphical and quantitative tools
are proposed for this purpose. Finally, the Gp metamodel can be used intensively for
uncertainty propagation, estimation of conditional probabilities and for the inversion
problem. The conditional probabilities of PCT exceeding the critical value are here es-
timated using the Gp within a Bayesian framework to take into account the uncertainty
of the Gp prediction.

The efficiency of ICSCREAM methodology has been demonstrated on two IB-
LOCA use cases of high complexity and from a learning sample of around a thousand
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simulations. For both cases, 80% of the PCT variance is explained by the Gp, with a
high ability for identifying PCT critical areas. Although the metamodel could still be
improved, it provides a reliable prediction error and accurate prediction intervals. This
justifies its use in a Bayesian framework for the estimation of conditional probabilities
of exceeding the 90%-quantile, according to each input (or group of inputs) that have
to be penalized. This estimation, not directly feasible with the numerical thermalhy-
draulic model because of its computational cost, becomes now tractable via intensive
simulations of the Gp metamodel. The analysis of the conditional probabilities has re-
vealed the strong and non-monotonic individual influence of some scenario inputs for
one use case, and the high interaction of the two scenario inputs for the other one.

ICSCREAM has been developed in a particular industrial context where the user
cannot add new simulations to the current design of experiments. In the case where
additional simulations could be available, a research track would be to develop dedi-
cated adaptive sampling strategies. Following this idea, efficient Gp-based sequential
enrichment schemes could be adapted to add code simulations in an efficient manner
(see, e.g., the works of [55, 7, 56, 57, 58] which deal with various purposes). However,
their direct use in such large dimensional problems still remains a challenge. Another
important limitation of the ICSCREAM methodology is its use on large-size datasets,
typically several thousands of simulations. The estimation and building of the Gp
metamodel then become difficult to achieve and compute. To make the Gp applicable
in this context, methods based on nested kriging [59] or variational inference [60] could
be studied. Finally, handling the “chaotic” code behavior (e.g., physical bifurcations
or threshold effects) could be achieved by non-stationary Gp metamodels such as the
treed Gp which allows a smart domain partitioning [61].

Appendix – Illustration on an analytical test case
Initially, the ICSCREAM methodology was directly developed to be applied to very
high-dimensional real datasets. To further illustrate the robustness and efficiency of
the method, we propose here an additional analytical test case, in lower dimension,
but applying the same rules of thumb for the sample size. This case is designed to
be “representative” of some features of the underlying physics at stake in an IB-LOCA
model, in the sense that it exhibits interaction and non-monotonic conditional probabil-
ities. This case is proposed to bring additional information to the previous applications
by illustrating how a predictivity around 80% allows nevertheless to correctly estimate
the conditional probabilities. Moreover, it can be seen as a tool for future research
prospects, for example on adaptive sampling in large dimension.

The considered analytical model M f , inspired from the Friedman function [62] and
defined in dimension d f = 20, is given by:

M f (X) = a1 sin
(

6π X5/2
1 (X2−0.5)

)
+a2(X3−0.5)2 +a3X4 +a4X5 + rX6,...,X15 (6)

where rX6,...,X15 =
a5√

(∑i=6...15 i2)
∑i=6...15

√
12i(Xi−0.5) and X = (X1, . . . ,X20) are inde-

pendent and uniform random variables on [0,1].
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The model depends only on the fifteen first inputs. The first term represents a
strong and non monotonic interaction between the two first inputs. The second term is
a quadratic function of X3 while the other ones are linear. The inputs that have to be
penalized are (X1,X2,X3,X4,X5). The parameters for tuning the influence of the differ-
ent inputs are chosen as follows: a = (5, 20, 8, 5, 1.5)>. Under this parametrization,
X2 explains alone around 10% of the output variance, X1 has no individual effect but
its interaction effect with X2 is strong (around 30% of the output variance). X3, X4 and
X5 only have individual effects (no interaction) and explain, respectively, around 11%,
28% and 10% of the output variance. The effects of the ten remaining inputs (X6 to
X15) represent around 11.5% of the output variance. Finally, we compute reference
values (by intensive Monte Carlo simulations) of the 90%-quantile of the model output
(approximately equal to q0.9 = 14) and the one-dimensional mean effects as well as the
one-dimensional conditional probabilities of exceeding q0.9, according to the inputs to
be penalized (see Fig. 11).

Figure 11: M f analytical case: reference one-dimensional mean effects and condi-
tional probabilities of exceeding q0.9 for the five inputs to be penalized Xpen.

To apply the ICSCREAM methodology, we consider a Monte Carlo sample of n =
200 evaluations of the M f model and the 90%-quantile is estimated from this learning
sample (q̂0.9 = 13.8 is obtained here). Step 2 is performed with a level αtest = 0.05
which yields to the selection of inputs X1 to X5 by HSIC measures and X1 to X6 by
target HSIC ones. From an aggregation procedure based on Bonferroni’s correction,
X1 to X5 are selected in XPII and X6 in XSII. From this selection, a Gp metamodel is
built with the same parametric choices as in Section 5.3. Predictivity coefficients of
Q2 = 0.78 and Q2 = 0.77 are obtained on a test basis and by cross-validation on the
learning sample, respectively. Regarding the predictive variance, PVA is around 0.15.
Diagnostic metrics of the Gp performance validation are illustrated in Figure 12. We
observe that, despite the amount of unexplained variance (i.e., slightly more than 20%),
the Gp prediction intervals are satisfactory. We are therefore in a configuration quite
similar to those obtained on the two IB-LOCA use cases.
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From the Gp metamodel, the conditional probabilities are estimated and provided
in Figure 13. We observe a good approximation of the one-dimensional conditional
probabilities (by comparing to the reference curves given in Fig. 11 right): first, the
different behaviors are well captured; second, the penalizing areas of each input are
clearly identified. Finally, a convergence study has also been performed: it shows the
predictivity and Gp performance improvements as n increases (Q2 around 0.85 and
0.94, for n = 400 and 600 respectively).

In the future, such a test case can be extended by adding, for instance, some locally
irregular behavior or an interaction between an input to be penalized XA and another
input XB (not to be penalized) whose global influence would be rather small on the
output but significant on the conditional probability to XA. In this last case, the risk
would be that XB would not be selected by HISC-based tests (e.g., if the sample size
is too small), which would lead to a poor estimation of the conditional probability of
XA. The challenge will be to be able to detect this type of error, perhaps by relying
on convergence and stability plots of HSIC, or by building more powerful HSIC-based
tests. Finally, the modeling and propagation of the “observed” error of the metamodel
could be investigated and compared to the predictive error of the metamodel.

(a) Predicted vs. observed values. (b) α-α plot.

Figure 12: M f analytical case: diagnostics of Gp performance.
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Figure 13: M f analytical case: conditional probabilities of exceeding q̂0.9 for the inputs
to be penalized, estimated from the Gp.

References
[1] J. BACCOU, J. ZHANG, P. FILLION, G. DAMBLIN, A. PETRUZZI, R. MEN-

DIZÁBAL, F. REVENTÓS, T. SKOREK, M. COUPLET, B. IOOSS, D. OH,
T. TAKEDA, and N. SANDBERG, “SAPIUM: A generic framework for a prac-
tical and transparent quantification of thermal-hydraulic code model input uncer-
tainty,” Nuclear Science and Engineering, 194, 721 (2020).

[2] R. MAY, J. SORENSEN, and R. ENGEL, “Probabilistic Methods for Evaluating
Operational Transient Margins and Uncertainties,” Nuclear Science and Engi-
neering, 103, 81 (1989).

[3] R. SMITH, Uncertainty quantification, SIAM (2014).

[4] G. WILSON, “Historical insights in the development of Best estimate Plus Un-
certainty safety analysis,” Annals of Nuclear Energy, 52, 2 (2013).

[5] P. SERMER, F. M. HOPPE, D. PUN-QUACH, K. R. WEAVER, C. OLIVE,
and I. CHENG, “Statistical Foundation for Decision Making in Nuclear
Safety–Related Problems Using Best Estimate Plus Uncertainty Analyses,” Nu-
clear Science and Engineering, 178, 119 (2014).

[6] V. PICHENY, D. GINSBOURGER, O. ROUSTANT, R. HAFKA, and N.-H. KIM,
“Adaptive Designs of Experiments for Accurate Approximation of a Target Re-
gion,” Journal of Mechanical Design, 132, 7 (2010).

[7] C. CHEVALIER, J. BECT, D. GINSBOURGER, V. PICHENY, Y. RICHET, and
E. VAZQUEZ, “Fast kriging-based stepwise uncertainty reduction with applica-
tion to the identification of an excursion set,” Technometrics, 56, 455 (2014).

25



[8] Y. RICHET and V. BACCHI, “Inversion Algorithm for Civil Flood Defense Op-
timization: Application to Two-Dimensional Numerical Model of the Garonne
River in France,” Frontiers in Environmental Science, 7, 160 (2019).

[9] F. SANCHEZ-SAEZ, A. SÀNCHEZ, J. VILLANUEVA, S. CARLOS, and S. MAR-
TORELL, “Uncertainty analysis of large break loss of coolant accident in a pres-
surized water reactor using non-parametric methods,” Reliability Engineering &
System Safety, 174, 19 (2018).

[10] C. CHARIGNON, J.-C. LECOY, and J.-Y. SAUVAGE, “CathSBI, A new method-
ology for the revised French LOCA rules,” NUTHOS-11, Gyeongju, Korea
(2016).

[11] V. LARGET, “How to bring conservatism to a BEPU analysis,” NURETH-18,
Portland, USA (2019).

[12] G. GEFFRAYE, O. ANTONI, M. FARVACQUE, D. KADRI, G. LAVIALLE,
B. RAMEAU, and A. RUBY, “CATHARE2 V2.5_2: A single version for vari-
ous applications,” Nuclear Engineering and Design, 241, 4456 (2011).

[13] B. IOOSS and A. MARREL, “Advanced methodology for uncertainty propagation
in computer experiments with large number of inputs,” Nuclear Technology, 205,
1588 (2019).

[14] R. MENDIZÁBAL, “Bayesian perspective in BEPU licensing analysis,” Proceed-
ings of ANS Best Estimate Plus Uncertainty International Conference (BEPU
2018), Lucca, Italy (2018).

[15] J. BACCOU, J. ZHANG, P. FILLION, G. DAMBLIN, A. PETRUZZI, R. MEN-
DIZÁBAL, F. REVENTÓS, T. SKOREK, M. COUPLET, B. IOOSS, D.-Y. OH,
and T. TAKEDA, “Development of good practice guidance for quantification of
thermal-hydraulic code model input uncertainty,” Nuclear Engineering and De-
sign, 354, 110173 (2019).

[16] G. DAMBLIN and P. GAILLARD, “Bayesian inference and non-linear extensions
of the CIRCE method for quantifying the uncertainty of closure relationships in-
tegrated into thermal-hydraulic system codes,” Nuclear Engineering and Design,
359, 110391 (2020).

[17] G. WALLIS, “Uncertainties and probabilities in nuclear reactor regulation,” Nu-
clear Engineering and Design, 237, 1586 (2007).

[18] A. PETRUZZI and F. D’AURIA, “Approaches, relevant topics, and internal
method for uncertainty evaluation in predictions of thermal-hydraulic system
codes,” Science and Technology of Nuclear Installations, 2008, Article ID
325071, 17 pages, DOI:10.1155/2008/325071 (2008).

[19] B. IOOSS, V. VERGÈS, and V. LARGET, “BEPU robustness analysis via
perturbed-law based sensitivity indices,” Proceedings of the Institution of
Mechanical Engineers, Part O: Journal of Risk and Reliability (2021,
doi:101177/1748006X211036569).

26



[20] J.-C. LECOY, J.-Y. SAUVAGE, and C. CHARIGNON, “RIPS, a Statistical Method
for Characterizing the Limiting Scenario in a BEPU Approach,” Nuclear Technol-
ogy, 205, 1567 (2019).

[21] K.-T. FANG, R. LI, and A. SUDJIANTO, Design and modeling for computer
experiments, Chapman & Hall/CRC (2006).

[22] A. FORRESTER, A. SOBESTER, and A. KEANE (Editors), Engineering design
via surrogate modelling: a practical guide, Wiley (2008).

[23] B. A. KHUWAILEH and P. J. TURINSKY, “Surrogate based model calibration for
pressurized water reactor physics calculations,” Nuclear Engineering and Tech-
nology, 49, 422 (2017).

[24] X. WU, T. KOZLOWSKI, and H. MEIDANI, “Kriging-based inverse uncertainty
quantification of nuclear fuel performance code BISON fission gas release model
using time series measurement data,” Reliability Engineering and System Safety,
169, 422 (2018).

[25] A. WHYTE and G. PARKS, “Surrogate model optimization of a "micro core"
PWR fuel assembly arrangement using Deep Learning models,” Proc. of the
International Conference on Physics of Reactors 2020 (PHYSOR 2020), Cam-
bridge, United Kingdom (2020).

[26] R. CHRISTIAN, A. U. A. SHAH, and H. G. KANG, “Dynamic PRA-Based Es-
timation of PWR Coping Time Using a Surrogate Model for Accident Tolerant
Fuel,” Nuclear Technology, 207, 376 (2021).

[27] L. PUPPO, N. PEDRONI, A. BERSANO, F. DI MAIO, C. BERTANI, and E. ZIO,
“Failure identification in a nuclear passive safety system by Monte Carlo sim-
ulation with adaptive Kriging,” Nuclear Engineering and Design, 380, 111308
(2021).

[28] J. C. HELTON, “Uncertainty and sensitivity analysis in the presence of stochastic
and subjective uncertainty,” Journal of Statistical Computation and Simulation,
57, 1-4, 3 (1997).

[29] W. OBERKAMPF, J. HELTON, and K. SENTZ, “Mathematical representation of
uncertainty,” 19th AIAA Applied Aerodynamics Conference, 1645 (2001).

[30] W.-L. LOH, “On Latin hypercube sampling,” Annals of Statistics, 24, 2058
(1996).

[31] M. DE LOZZO and A. MARREL, “New improvements in the use of dependence
measures for sensitivity analysis and screening,” Journal of Statistical Computa-
tion and Simulation, 86, 3038 (2016).

[32] A. MARREL and V. CHABRIDON, “Statistical developments for target and con-
ditional sensitivity analysis: application on safety studies for nuclear reactor,”
Reliability Engineering and System Safety, 214, 107711 (2021).

27



[33] S. DA VEIGA, F. GAMBOA, B. IOOSS, and C. PRIEUR, Basics and trends in
sensitivity analysis. Theory and practice in R, SIAM (2021).

[34] E. PARZEN, “On Estimation of a Probability Density Function and Mode,” The
Annals of Mathematical Statistics, 33, 3, 1065 (1962).

[35] J. LOEPPKY, J. SACKS, and W. WELCH, “Choosing the sample size of a com-
puter experiment: A practical guide,” Technometrics, 51, 366 (2009).

[36] A. MARREL, B. IOOSS, F. VAN DORPE, and E. VOLKOVA, “An efficient
methodology for modeling complex computer codes with Gaussian processes,”
Computational Statistics and Data Analysis, 52, 4731 (2008).

[37] A. GRETTON, O. BOUSQUET, A. SMOLA, and B. SCHÖLKOPF, “Measuring
statistical dependence with Hilbert-Schmidt norms,” Proceedings Algorithmic
Learning Theory, 63–77, Springer-Verlag (2005).

[38] S. DA VEIGA, “Global sensitivity analysis with dependence measures,” Journal
of Statistical Computation and Simulation, 85, 1283 (2015).

[39] A. GRETTON, O. BOUSQUET, A. SMOLA, and B. SCHÖLKOPF, “Measuring
statistical dependence with Hilbert-Schmidt norms,” International conference on
algorithmic learning theory, 63–77, Springer (2005).

[40] A. GRETTON, K. FUKUMIZU, C. H. TEO, L. SONG, B. SCHÖLKOPF, and A. J.
SMOLA, “A kernel statistical test of independence,” Advances in neural informa-
tion processing systems, 585–592 (2008).

[41] R. EL AMRI and A. MARREL, “Optimized HSIC-based tests for sensitivity anal-
ysis: application to thermal-hydraulic simulation of accidental scenario on nu-
clear reactor,” Quality and Reliability Engineering International Journal, 1–18
(2021); https://doi.org/10.1002/qre.2954.

[42] V. CHABRIDON, A. MARREL, and B. IOOSS, “Tools for global and target sen-
sitivity analyses in the context of high-dimensional thermal-hydraulic numeri-
cal experiments,” eProceedings of BEPU 2020 Conference (cancelled) (2021);
https://hal.archives-ouvertes.fr/hal-02877385/.

[43] N. A. HEARD and P. RUBIN-DELANCHY, “Choosing between methods of com-
bining p-values,” Biometrika, 105, 1, 239 (2018).

[44] C. RASMUSSEN and C. WILLIAMS, Gaussian processes for machine learning,
MIT Press (2006).

[45] B. EFRON, T. HASTIE, I. JOHNSTONE, and R. TIBSHIRANI, “Least angle re-
gression,” Annals of Statistics, 32, 2, 407 (2004).

[46] W. WELCH, R. BUCK, J. SACKS, H. WYNN, T. MITCHELL, and M. MOR-
RIS, “Screening, predicting, and computer experiments,” Technometrics, 34, 1,
15 (1992).

28



[47] T. HASTIE, R. TIBSHIRANI, and J. FRIEDMAN, The elements of statistical
learning: Data Mining, Inference, and Prediction, Springer Series in Statistics,
Springer (2009).

[48] F. BACHOC, “Cross validation and maximum likelihood estimations of hyper-
parameters of Gaussian processes with model misspecification,” Computational
Statistics and Data Analysis, 66, 55 (2013).

[49] C. DEMAY, B. IOOSS, L. L. GRATIET, and A. MARREL, “Model selection for
Gaussian Process regression: an application with highlights on the model vari-
ance validation,” Quality and Reliability Engineering International Journal, 1–20
(2021); https://doi.org/10.1002/qre.2973.

[50] A. MARREL, B. IOOSS, S. DA VEIGA, and M. RIBATET, “Global sensitivity
analysis of stochastic computer models with joint metamodels,” Statistics and
Computing, 22, 833 (2012).

[51] H. ZOU and T. HASTIE, “Regularization and Variable Selection via the Elastic
Net,” Journal of the Royal Statistical Society. Series B (Statistical Methodology),
67, 2, 301 (2005).

[52] B. SCHÖLKOPF, A. J. SMOLA, F. BACH ET AL., Learning with kernels: support
vector machines, regularization, optimization, and beyond, MIT press (2002).

[53] L. BREIMAN, J. FRIEDMAN, R. OLSHEN, and C. STONE, Classification and
Regression Trees, Wadsworth and Brooks, Monterey, CA (1984).

[54] C. STORLIE, H. BONDELL, B. REICH, and H. ZHANG, “Surface estimation,
variable selection, and the nonparametric oracle property,” Statistica Sinica, 21,
2, 679 (2011).

[55] J. BECT, D. GINSBOURGER, L. LI, V. PICHENY, and E. VAZQUEZ, “Sequential
design of computer experiments for the estimation of a probability of failure,”
Statistics and Computing, 22, 773 (2012).

[56] M. MOUSTAPHA, B. SUDRET, J.-M. BOURINET, and B. GUILLAUME,
“Quantile-based optimization under uncertainties using adaptive Kriging surro-
gate models,” Structural and Multidisciplinary Optimization, 54, 6, 1403 (2016).

[57] H. WANG, J. YUAN, and S. H. NG, “Gaussian process based optimization algo-
rithms with input uncertainty,” IISE Transactions, 52, 4, 377 (2020).

[58] C. SABATER, O. LE MAÎTRE, P. M. CONGEDO, and S. GÖRTZ, “A Bayesian
approach for quantile optimization problems with high-dimensional uncertainty
sources,” Computer Methods in Applied Mechanics and Engineering, 376 (2021).

[59] D. RULLIÈRE, N. DURRANDE, F. BACHOC, and C. CHEVALIER, “Nested Krig-
ing predictions for datasets with large number of observations,” Statistics and
Computing, 28, 4, 849 (2018).

29



[60] J. HENSMAN, N. FUSI, and N. D. LAWRENCE, “Gaussian Processes for Big
Data,” Uncertainty in Artificial Intelligence - Proceedings of the 29th Conference,
UAI 2013, 282–290 (2013).

[61] R. B. GRAMACY and H. K. H. LEE, “Bayesian Treed Gaussian Process Models
With an Application to Computer Modeling,” Journal of the American Statistical
Association, 103, 1119 (2008).

[62] J. H. FRIEDMAN, “Multivariate Adaptive Regression Splines,” The Annals of
Statistics, 19, 1, 1 (1991).

30


	Introduction
	ICSCREAM: a four-step-based methodology
	Description of the thermal-hydraulic use cases and datasets
	Step 2: Screening and ranking with HSIC-based independence tests
	Theoretical and methodological details
	Application on IB-LOCA uses-cases

	Step 3: Gaussian process metamodeling
	Parametric choices for the Gaussian process and estimation of the hyperparameters
	Validation of the Gp metamodel
	Application on IB-LOCA uses-cases

	Step 4: Application for the identification of penalizing configurations
	Definition and computation of conditional probabilities
	Results for IB-LOCA use cases

	Conclusion and prospects

