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Abstract

The robust optimization of engineering systems generally involves the use of complex numerical mod-
els that take as input both design variables and random variables that model the uncertainties.
The numerous simulations required by such analyses can become computationally very expensive.
Moreover, some input conditions can lead to simulation failures or instabilities, due, for instance,
to convergence issues of the numerical scheme of complex partial derivative equations. Most of the
time, the set of inputs corresponding to failures is not known a priori and thus may be associated
to a hidden constraint. Since the observation of a simulation failure regarding this hidden con-
straint may be as costly as a feasible simulation, we seek to learn the feasible set of inputs and thus
target areas without simulation failure before further analysis. In this context, we propose an adap-
tive Gaussian Process Classifier method to learn the feasible domain. The proposed methodology
is based on a Stepwise Uncertainty Reduction strategy on random sets in the classification setting
with Gaussian Process Classifiers. The performance of this strategy on different hidden-constrained
problems will be presented in particular on an application in wind turbine reliability analysis.

Keywords: Gaussian Process Classifier, Stepwise Uncertainty Reduction, Excursion Set Inversion, Hidden
Constraints

1 Introduction

Nowadays, the design of engineering systems
implies the use of numerical models, involv-
ing complex physical systems with non-linear
behaviours and numerous design and uncertain
variables. Taking into account a large number of
uncertainties, for instance, in the context of uncer-
tainty propagation (Sudret, 2007) or robust design
(Moustapha and Sudret, 2019) require numerous
simulations of these numerical models and can
become computationally very expensive.

Moreover, certain combinations of values of the
input variables can lead to simulation instabili-
ties or failures. Indeed, the computer codes can
fail to converge due for instance to instabilities in
the numerical scheme of complex partial derivative
equations (e.g. time step smaller than the critical
step), to an inadequate mesh (e.g. not fine enough
in areas of high stress concentration) or computed
values that tend to infinity (e.g. species concentra-
tion outputs in chemical reaction simulations (See
(Poirette et al, 2017) for instance)).

In these cases, it is difficult and most often
impossible for the expert to determine a priori the
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feasible set of inputs i.e. inputs corresponding to
converged simulation. Belonging to this feasible
set corresponds to a hidden constraint (Digabel
and Wild, 2015).

Since the observation of a simulation failure
might be as costly as a feasible simulation, it is
useful to assess the convergence domain likeliness.

Hence, we seek to learn the feasible set of
inputs in order to target areas without simula-
tion failure during processes such as optimiza-
tion, active or sequential metamodeling, reliability
assessment or more basically to study code perfor-
mances.

No hypothesis (smoothness or regularity)
between the failure and feasible areas is assumed
and neither is any level of robustness (percentage
of failure) of the simulator. Therefore, in order to
learn the hidden constraint, we consider in this
study that only binary observations corresponding
to failure or non-failure status are available.

It is actually a binary classification problem
and thus classification modeling techniques can
be used to approximate the failure likelihood.
Moreover, adaptive approaches are one promising
way to reduce the number of expensive simula-
tions for the classifier construction. There is a
wide literature on adaptive approaches for regres-
sion in particular for Gaussian process (GP) (Bect
et al, 2012; Chevalier, 2013; Echard et al, 2011;
Bichon et al, 2012; El Amri et al, 2020), Sup-
port Vector Machines (Basudhar and Missoum,
2013; Bourinet, 2018) and polynomial-chaos-based
Kriging (Schöbi R. et al, 2017) surrogates. In
the context of hidden constraints, strategies using
GPC (Bachoc et al, 2020; Nickisch and Ras-
mussen, 2008) during an optimization process,
in particular Bayesian optimization, have been
proposed (Bachoc et al, 2020) but enrichment
points are chosen to improve the optimization and
not the classifier in these approaches. In a more
global classification setting, active learning strate-
gies have also been proposed for Support Vector
Classifier (Bourinet, 2018) and GPC (Zhao et al,
2021b,a).

In this paper, we propose a Gaussian Pro-
cess Classifier (GPC) based active learning to
assess the feasible domain. Indeed, Gaussian pro-
cess based models have the advantage to provide
a measure of uncertainty on the (class) predic-
tion and thus allowing the definition of enrichment
criteria naturally derived from this uncertainty

measure. The proposed methodology is an adapta-
tion of Stepwise Uncertainty Reduction strategies,
usually used in inversion with Gaussian Process
Regression, in the classification setting with GPC
models.

The rest of the article is organized as fol-
lows. First, we provide a presentation of the GPC
model and Stepwise Uncertainty Reduction strate-
gies. Then, we present our Stepwise Uncertainty
Reduction strategy for classification with GPC
models. Finally, we present the performance of
our methodology on three application examples.
The two first applications are analytical cases and
the third one is an industrial case targeting the
simulation-based estimation of the accumulated
damage of a wind turbine subject to environmen-
tal conditions.

2 General settings of hidden
constrained problem

Let f : Ω ⊂ R
d → R represent a numerical sim-

ulator output. Let x be the parameters that are
input to this simulator. For some sets of inputs,
simulations fail to provide an output. Hence, we
assume that, for each simulated input condition
x, we get an observation y(x) equal to 0 when the
simulator failed to provide a converged output and
to 1 when the simulation succeeded.

In the context of hidden constraint learning,
the quantity of interest is the feasible domain Γ∗ ⊂
Ω given by:

Γ∗ = {x ∈ Ω / y(x) = 1} (1)

where y : Ω → {0, 1} is a priori unknown. Hence,
the purpose is to get an estimation of the feasible
domain Γ∗.

In the next section, we will focus on GPCs
based strategies.

3 The Gaussian process
classification model

In probabilistic binary classification, only binary
values yi ∈ {0, 1} are observed. Given these obser-
vations, one would like to predict the membership
probability of a new point to the class of interest,
here class ”1” indicating feasibility (convergence
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of the simulation). GP based classification mod-
els propose to use a latent random process that
describes the class membership.

The classical GPC model is described in
(Rasmussen and Williams, 2006; Nickisch and
Rasmussen, 2008). In this model, the latent
distribution posterior is non-gaussian and sev-
eral approaches have been proposed to build a
Gaussian approximation of the posterior (such
as the Laplace approximation, Expectation-
Propagation, the Kullback-Leibler method
and variational method). The article (Nickisch
and Rasmussen, 2008) gives an overview of
all these methods. The authors conclude that
the Expectation-Propagation approximation,
although numerically expensive, is the best one
in terms of accuracy.

More recently, another Gaussian process (GP)
based classification model has been proposed in
(Bachoc et al, 2020) that consists in conditioning
the latent GP on the signs observations charac-
terizing the belonging to a class. This model has
the advantage to come with theoretical guaran-
tees, unlike the first model that implies Gaussian
approximation of the posterior. In the following,
we will use this latter to build our active learning
strategy.

Let Z be a GP characterized by a constant
mean function µZ ∈ R and a stationary kernel
kZθ (·, ·) on Ω2 with hyperparameters θ ∈ Θ ⊂ R

d.
The posterior distribution of Z knowing the obser-
vations {X = (x1, . . . , xn), zn = (z1, . . . , zn)}
is Gaussian with posterior mean mn(·, zn) and
covariance kn(·, ·) given for x, x′ ∈ Ω2 by

mn(x, zn) = µZ + kZθ (x)K
−1(zn − µZ) (2)

kn(x, x
′) = kZθ (x, x

′) + kZθ (x)K
−1kZθ (x) (3)

with K = kZθ (X ,X ) the covariance matrix
between the observations and kZθ (x) =
(k(x, x1), . . . , k(x, xn)). In addition, we denote by
σ2
n(x) = kn(x, x) the posterior variance of the GP.
In probabilistic binary classification, we don’t

have access to the realizations zn of the GP Z but
only to binary observations Y = (y1, . . . , yn) ∈
{0, 1}n of an indicator of the feasibility domain
Yn = (1x1∈Γ∗ , . . . ,1xn∈Γ∗).

The GPC modeling of the feasibility (or non-
failure) probability proposed in (Bachoc et al,
2020) consists in defining a latent GP Z and pre-
dicting for any x ∈ Ω, Y (x) = 1Z(x)>0 given
Yn = (1Z(x1)>0, . . . ,1Z(xn)>0): the 0-1 encoding
of the sign of Z(x) knowing the sign of Zn =
(Z(x1), . . . , Z(xn)). The feasibility probability is
then defined in (Bachoc et al, 2020) as pn(x) =
P[Z(x) > 0|X ,Yn = Y] which is equivalent to the
full Bernoulli formulation:

pn(x) = P[Y (x) = 1|X ,Yn = Y]. (4)

The feasibility probability can actually be
expressed as follows

pn(x) =

∫
Rn

Φ̄

(
−mn(x, zn)

σn(x)

)
ϕZn
sn (zn) dzn, (5)

where ϕZn
sn (zn) is the Gaussian truncated condi-

tioned probability density function of zn restricted
to respect Yn = Y and Φ̄ is defined as:

Φ̄(
a

b
) =

{
1− Φ(ab ) if b ̸= 0
1−a>0 if b = 0

(6)

with Φ is the cumulative density function of the
standard normal distribution.

The value of pn(x) can be approximated by a
Monte Carlo method as

p̂n(x) =
1

N

N∑
i=1

Φ̄

(
−mn(x, z

i
n)

σn(x)

)
(7)

where (zin)i=[1,N ] are N realizations of the
latent random vector Zn sampled following the
truncated distribution ϕZn

sn (zn). As the sampling
of the realizations (zin)i=[1,N ] is independent of x,
it can thus be generated only once (Botev, 2017;
Pakman and Paninski, 2014).

The hyperparameters µZ and θ of the latent
GP must be estimated to sample realizations at
observation points and approximate the probabil-
ity of failure at any point. They are estimated by
maximizing the likelihood leading to the estima-
tors

(µ̂Z , θ̂) = argmax
µZ ,θ

PµZ ,θ [Yn = Y] . (8)
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This likelihood is a Gaussian orthant probability
that can be estimated by Monte Carlo based
methods (Genz and Bretz, 2009; Botev, 2017;
Azzimonti and Ginsbourger, 2018).

Note that the GPC model does not provide a
”deterministic” posterior GP mean in the sense
that the latent GP posterior mean mn(x,Zn)
actually depends on the random vector Zn of the
latent GP at the observation points X .

Hence, we can not make use of existing learn-
ing functions in regression that depends directly
on the posterior GP mean and covariance func-
tion. In the classification setting, we are then
restricted to learning strategies that rely on
the feasibility probability pn(x) and the Step-
wise Uncertainty Reduction (Bect et al, 2012)
paradigm is well suited for this type of problem.

4 Stepwise Uncertainty
Reduction strategy for
hidden constraints learning

4.1 Stepwise Uncertainty Reduction
strategies

A Stepwise Uncertainty Reduction (SUR) strategy
aims to sequentially choose a sequence of learning
points in order to reduce the future uncertainty
given a quantity of interest. In the classification
problem, our quantity of interest is the feasible set
Γ∗.

Let us consider the random set:

Γ = {x ∈ Ω/Yn(x) = 1} (9)

with Yn(x) the conditional Bernoulli (Dai et al,
2013) random variable Y (x)|X ,Yn = Y.

Let Un be a measure of uncertainty on the ran-
dom set Γ knowing observations at points X . A
SUR strategy for this uncertainty measure consists
in finding at each step the point x∗

n+1 such that

x∗
n+1 = argmin

xn+1∈Ω
Jn(xn+1) (10)

with

Jn(xn+1) = En [Un+1(xn+1, Z(xn+1))] , (11)

where En [·] corresponds to a conditional expec-
tation on the stochastic process used to model
the quantity of interest.

In regression, these strategies seek to minimize
the expectation with respect to the posterior GP
Z(xn+1), i.e.

En [·] = EZ(xn+1) [·|X , Z(X )] . (12)

However computing the criterion (11), using
this latter formulation in our classification setting,
would involve, as in the regression one, a double
integration: one on the domain Ω and a second on
the random response Z(xn+1) (Chevalier, 2013).
Moreover, closed-form expressions allowing to
reduce the computational cost of the SUR criteria
have been proposed in (Chevalier, 2013) for the
regression setting but are not applicable here due
to the form of the coverage probability pn(x) in
the GPC context.

For this reason, we propose to minimize the
expectation of the uncertainty using the expecta-
tion on the Bernoulli process Yn

En [·] = EYn(xn+1) [·|X ,Yn = Y] . (13)

As Yn(xn+1) is a Bernoulli random vari-
able with probability pn(xn+1), the expression of
Jn(xn+1) is then given by

Jn(xn+1) = (1− pn(xn+1)) Un+1(xn+1, Yn(xn+1) = 0)
+pn(xn+1) Un+1(xn+1, Yn(xn+1) = 1).

(14)
This expression of the criterion Jn allows to get
rid of an integration over the realizations of the
latent GP Z(xn+1).

This criterion can actually be extended to a
parallel version that allows to evaluate simulta-
neously several learning points at each step n.
Indeed, let xq = (xn+1, . . . , xn+q) ∈ Ωq be a batch
of q ≥ 1 candidate points at step n. Yn(x

q) =
(Yn(xn+i))i=1,...,q is a multivariate Bernoulli ran-
dom vector with Yn(xn+i) a Bernoulli random
variable with probability pn(xn+i). The expression
of the parallel criterion is then given by:

Jn(x
q) =

∑
yq∈{0,1}q

Un+q(x
q, yq)p(yq) (15)
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where yq = (yn+1, . . . , yn+q) ∈ {0, 1}q are the
possible outcomes of Yn(x

q) and

p(yq) =
(∏q−1

i=1 P[Y (xn+i) = yn+i|X ,Y]
)

× P[Y (xn+q) = yn+q|X ,Y, xq−1, yq−1]
(16)

with P[Y (xn+i) = yn+i|X ,Y] equals
to pn(xn+i)

yn+i(1 − pn(xn+i))
1−yn+i and

P[Y (xn+q) = yn+q|x,Y, xq−1, yq−1] equals to
pn+q−1(xn+q)

yn+q (1− pn+q−1(xn+q))
1−yn+q .

Note that the number of terms of the sum
in (15) increases exponentially with q. Accord-
ingly, the computation time of the criterion (15) -
and even more its optimization (10) - is growing
explosively with the increase of q.

In the next section, we provide some notions
from random set theory (Molchanov, 2005;
Vorobyev and Lukyanova, 2013) that allow the
definition of a measure of uncertainty on the ran-
dom set Γ. These notions have already been used
to define SUR strategies for inversion (Chevalier,
2013; El Amri et al, 2020).

4.2 Vorob’ev expectation and
deviation

Let us define Qα the α-percentiles of Γ, that are
actually the level sets of pn(x), as

Qα = {x ∈ Ω : pn(x) ≥ α}, α ∈]0, 1]. (17)

The Vorob’ev expectation (Vorobyev and
Lukyanova, 2013) is defined as the α∗-percentile
of Γ, where α∗ is chosen so that the volume of the
defined set equals the expected volume of Γ

E[µ(Γ)] = µ(Qα∗), (18)

with µ the Lebesgue measure. In practice, α∗ can
be obtained by a simple dichotomy.

The Vorob’ev expectation is actually a global
minimiser (see proof in (Molchanov, 2005)),
among closed sets of volume equal to the mean
volume of Γ, of the Vorob’ev deviation, given by

V arn(Γ) = E[µ(Qα∆Γ)|X ,Y], (19)

with Γ∆Qα = (Γ \Qα) ∪ (Qα \ Γ) the symmetric
difference between the two sets Γ and Qα.

4.3 ARCHISSUR: An Active
Recovery of a Constrained and
Hidden Subset by SUR method
based on the Vorob’ev deviation

For the classification problems that we wish
to tackle, we propose an Active Recovery of
a Constrained and Hidden Subset by SUR
(ARCHISSUR) method. This SUR strategy boils
down to iteratively solving the optimization prob-
lem (14) with uncertainty measure defined by the
Vorob’ev deviation Eq. (19) such that

Un+1(xn+1, Yn(xn+1) = yn+1)
= V arn+1(Γ)
=
∫
(1− pn+1(x))1pn+1(x)≥α∗µ(dx)

+
∫
pn+1(x)1pn+1(x)<α∗µ(dx)

(20)

and more generally problem (15) for q ≥ 1 with
uncertainty measure defined by

Un+q(x
q, Yn(x

q) = yq)
= V arn+q(Γ)
=
∫
(1− pn+q(x))1pn+q(x)≥α∗µ(dx)

+
∫
pn+q(x)1pn+q(x)<α∗µ(dx),

(21)

where pn+q(x) is the updated feasibility proba-
bility estimated with the GPC updated for the
considered outcome yq = (yn+1, . . . , yn+q) ∈
{0, 1}q of Yn(x

q), i.e.

pn+q(x) = P[Y (x) = 1|X ,Y, xq, Yn(x
q) = yq].

(22)
Given the estimator of the conditional feasi-

bility probability expression in Eq. (7), the future
feasibility probability can be estimated by

pn+q(x) =
1

N

N∑
i=1

Φ̄

(
−(mn+q(x, z

i
n+q)

σn+q(x)

)
, (23)

where (zin+q)i=[1,N ] are N realizations
of the latent random vector Zn+q =
(Z(x1), . . . , Z(xn), Z(xn+1), . . . , Z(xn+q)) sam-

pled from the truncated distribution ϕ
Zn+q

Y (zn+q)

and mn+q(x, z
i
n+q), kn+q(x, x

′) are respectively
the updated mean and covariance function.

For each q-batch of points xq, the evaluation
of the criterion given by (15) (resp. (14) if q = 1)
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involves 2q distinct updates of the GPC Yn(x) for
the 2q possible outcomes of Yn(x

q). The use of
a crude GPC update with ((X , xq), (Y, Yn(x

q)))
would require generating 2q times realizations of a
truncated (n+q)-dimensional normal distribution,
leading to an untractable criterion. Hence, to allow
fast computation of the criterion we propose to use
the GP update formulae provided in (Chevalier,
2013) so that we avoid sampling the whole random
vector Zn+q.

The updated mean mn+q and covariance func-
tion kn+q of the GPC are then given by

mn+q(x, z
i
n+q) = mn(x, z

i
n)

+ λnew(x)
T
(
zq,i −mn(x

q, zin)
)
,

(24)
kn+q(x, x

′) = kn(x, x
′)− kn(x, x

q)TK−1
newkn(x

′, xq)
(25)

with λnew(x) = K−T
newkn(x, x

q) ∈ Rq, Knew =
kn(x

q, xq) ∈ Rq×q and zq,i = (zin+1, . . . , z
i
n+q).

Moreover, zq,i follows the truncated multivari-
ate normal distribution given zin

zq,i ∼ N
(
mn(x

q, zin),Knew

)
(26)

such that (1zi
n+1>0, . . . ,1zi

n+q>0) = yq.

Thus, only one realization of the random
vector zq,i knowing the zin has to be sampled
to compute mn+q(x, z

i
n+q). This can be simply

done by rejection while not being too numerically
expensive if the batch size q is reasonable.

4.4 ARCHISSUR as an extension of
another GPC active learning
method

Some other GPC based active learning methods
have already been proposed. In particular, the
Mean Objective Cost of Uncertainty (MOCU)
learning function (Yoon et al, 2013), which is
defined as the increase of the classification error
due to the model uncertainty, is actually related
to the SUR strategy even if the link is not done
in the paper (Yoon et al, 2013). Indeed, it can be
shown that the MOCU function expression (A)
can be rewritten as

UMOCU (xn+1) = En[V arn+1(Γ)]− V arn(Γ)
(27)

where V arn(Γ) is given by (19) with α = 1/2.

In that respect, it can be interpreted as a par-
ticular case of the Vorob’ev based SUR strategy
for q = 1 with a fixed level set α equals to 1/2, i.e.
with the Vorob’ev median instead of the value α∗

solving (18).
Note that more recently, a smooth con-

cave approximation of the MOCU function Soft-
MOCU has been proposed in (Zhao et al, 2021b)
in order to improve efficiency in the long run. In
fact, this function is obtained by using a smooth
approximation of the maximum function (see the
original expression of MOCU in (A1)) by the
nested log of the sum of exponentials, generally
named LogSumExp (or RealSoftMax). We will
compare the results obtained with ARCHISSUR
to the ones achieved using the SMOCU learning
function in the numerical applications.

5 Applications

5.1 Methodology settings and
comparison measures

The GPC active learning method actually pro-
vides a random set whose uncertainty has been
reduced as a result. Then, a deterministic clas-
sifier must be chosen to characterize the feasible
set. This can be done by choosing a statistical
moment of the random set. A natural choice is
then the Vorob’ev expectation which minimizes
the symmetric difference to the random set Γ.

The performances of the different learning
strategies can be assessed by using different error
measures on the built classifiers when we have
access to the real feasible set (for analytic exam-
ples) by means of a grid of validation point

• relative error on the feasible set:

critF = µ(Γ∗∆Qα∗ )
µ(Γ∗)

= FN+FP
TP+FN

(28)

• the true positives and negatives rates:

critP =
TP

TP + FN
(29)

critN =
TN

TN + FP
. (30)

where TP, TN hold respectively for the number
of true positives and negatives, i.e. the number of
validation points correctly predicted in each class,
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and FP, FN for the number of false positives and
negatives, i.e. the number of validation points
mispredicted in each class.

In practice, the stopping criterion proposed in
(El Amri et al, 2020) for SUR strategies can be
adopted for ARCHISSUR. Indeed, this criterion
is based on the Vorob’ev deviation that is avail-
able at each step of the algorithm. This stopping
criterion is given by

∀ 0 ≤ j ≤ l, ∆j ≤ ϵ (31)

with ∆j = |V arj−1(Γ) − V arj(Γ)| the absolute
error on Vorob’ev deviations between two con-
secutive iterations, ϵ a tolerance value and l the
number of steps during which ∆j must be smaller
than the ϵ.

The application of GP based active learning
methods is usually done by updating hyperpa-
rameters by MLE at each iteration. However,
we noticed that ARCHISSUR has better explo-
ration properties when the hyperparameters are
constant for a certain number of iterations. More-
over, the Vorob’ev deviation evolution is smoother
when fixing hyperparameters, which allows the
use of the stopping criterion presented above.
Hence, we recommend fixing the hyperparameters
for a certain number of iterations and updating
them periodically by MLE considering the new
observations.

We benchmark the proposed ARCHISSUR
strategy with other active learning methods
including

• the Soft-MOCU (Zhao et al, 2021b) method
using its implementation available at https://
github.com/QianLab/NR SMOCU SGD GPC,

• a naive approach for GPC that consists in
enriching simultaneously the model with two
points corresponding to the one maximising the
variance of the latent process and the one which
is the closest to a feasibility probability of 0.5,

• and with simple GPC built on Maximin (Pron-
zato and Müller, 2012) optimal design of exper-
iments (DoE).

Note that the Soft-MOCU method (Zhao et al,
2021b) uses the classical GPC model (Nickisch
and Rasmussen, 2008) with the Expectation-
Propagation approximation.

5.2 Analytic example in two
dimensions

The performances of our proposed method and
different methods were assessed on a two-
dimensional classification problem based on the
Branin function fbranin defined as follows

y(x) =

{
1 if f(x) ≤ 10
0 else

(32)

where

fbranin(x) = a(x2−bx2
1+cx1−r)2+s(1−t)cos(x1)+s

(33)
with a = 1, b = 5.1/4π2, c = 5/π, r = 6, s = 10 and
t = 1/(8π).

We have applied the naive strategy, the
SMOCU method as well as the ARCHISSUR
method with one point and with a batch of two
points on the example (32). All methods were run
for the same 80 initial DoEs of 12 samples, a bud-
get of 80 enrichment points and 1000 integration
points (used in the integration-based criterion
estimation) for ARCHISSUR and SMOCU. More-
over, the GPC hyperparameters were optimized
every 10 iterations for ARCHISSUR and every 5
iterations for ARCHISSUR with a batch of two
points.

The final feasibility probability map and
DoE resulting from a run of ARCHISSUR,
ARCHISSUR BATCH 2 points and the SMOCU
method for the same initial DoE are illustrated on
Figures 1. On these Figures, we can see that all
methods manage to learn a good approximation of
the real feasible set (in black lines on the Figures).
It can also be observed that the classical GPC
model with EP approximation that is used for the
SMOCU algorithm is way more smooth than the
GPC model based on signs used in ARCHISSUR,
as already highlighted in the article (Bachoc et al,
2020).

The results obtained, on average, by 80 runs
on GPC model with a Maximin DoE of 92 points
and the mean results of all active learning methods
are presented in Tab. 2. Moreover, the evolution
of the relative error through the run of each active
learning method is presented on Figure 2. These
results show that ARCHISSUR achieves a better

https://github.com/QianLab/NR_SMOCU_SGD_GPC
https://github.com/QianLab/NR_SMOCU_SGD_GPC
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(a) ARCHISSUR (b) ARCHISSUR BATCH

(c) SMOCU with GPC model (Nickisch and
Rasmussen, 2008)

Fig. 1: Probability of feasibility pn(x) maps obtained with ARCHISSUR, ARCHISSUR BATCH with 2
points and SMOCU active learning methods

estimation of the feasible set on this example and
more precisely the 2 points batch version gives a
smaller error mean. In fact, the significant differ-
ence of performance between ARCHISSUR and
SMOCU algorithms is mainly due to the type of
GPC model chosen in the original SMOCU algo-
rithm implementation. Indeed, using the classical
GPC model in ARCHISSUR implementation is
greatly reducing its efficiency.

In order to compare the criteria and
their implementations in terms of numerical
cost, the computational times of ARCHISSUR,
ARCHISSUR for a batch of two points,
ARCHISSUR formulation using usual SUR def-
inition applied to classification Eq. (12) and
SMOCU criteria were assessed on this test case
and are given in Table 2. Note that the pro-
posed ARCHISSUR formulation allows reducing
on average the computational time by almost 4



Springer Nature 2021 LATEX template

9

Method E[critF ] CoV (critF )

GPC (Bachoc et al, 2020) 4.97× 10−2 0.23

ARCHISSUR 2.86× 10−2 0.30

ARCHISSUR BATCH 3.08× 10−2 0.23

SMOCU 1.32× 10−1 0.25

MIX 4.82× 10−2 0.28

Table 1: Branin-Hoo based analytical hidden con-
straint — mean and coefficient of variation (CoV)
of the relative error critF (28) for each method

in comparison to the usual definition adapted to
classification.

Method CPU time (s)
ARCHISSUR 0.079

ARCHISSUR BATCH (2 points) 0.412
ARCHISSUR with formulation 12 0.311

SMOCU 0.849

Table 2: Mean of system and user CPU times sum
(in seconds) on 20 repetitions for each criterion
evaluation with 2000 integration points x

The Figures 3 to 6 show the evolution of the
true negative and positives rates critN and critP
during the runs of each algorithm. From these
Figures, it can be noted that the approximation
obtained by SMOCU is more conservative, in the
sense that the unfeasible domain is overestimated
(Rates of true positive around 20%), compared
to the other methods (Rates of true positives
around 98%). This is as well a consequence of the
smoothness of the model.

5.3 Analytic example in ten
dimensions

The performances of the different algorithms were
tested in higher dimension on an analytical exam-
ple with 10 inputs x ∈ [0, 1]10, given by:

y(x) =

{
0 if x ∈ {x/f1(x) ≥ 0} ∪ {x/f2(x) ≥ 0}
1 else

(34)
where:

f1(x) = x2 + x1 − 1.6 + 0.1x3

f2(x) = 0.15(0.1 + x4)− (x2
5 + (x6 + 0.1)2)

(35)

The feasible set represents 86% of the domain for
this example and the unfeasible sets are located
at borders of the domain with different shapes.

On this example, only the results obtained
with the proposed algorithm ARCHISSUR and
the naive said Mix, method are presented on
Figure 7.

Indeed, the optimization of the acquisition
function in SMOCU method is done by random
optimization (see (Zhao et al, 2021b)) that weak-
ens the chances of coming across good exploration
or exploiting points in higher dimensions and thus
leads to poor results on this test case.

The naive strategy and the ARCHISSUR
method with one point were applied with ini-
tial DoEs of 60 points, a budget of 500 enrich-
ment points and 10000 integration points for
ARCHISSUR. Moreover, the GPC hyperparame-
ters were optimized every 10 iterations for the first
100th iterations and on an interval of 20 iterations
then.

The evolution of the relative error critF for
the two learning criteria is given on Figure 7. It
can be observed that the relative error is decreas-
ing a little faster for the naive method during
the 250th first iterations but with notable outliers
that reach higher error values in comparison to
the evolution for ARCHISSUR which is more reg-
ular. After the 250th iteration, the relative error
continues to decrease and achieves lower values
with ARCHISSUR while the error interval for the
naive method is wider with higher values. Table 4
gives the mean and coefficient of variation of critF
obtained at the end of each algorithm as well as
the values for a GPC built on a Maximin DoE
with the equivalent number of points as for the
algorithms, i.e. 560 points. On the basis of these
results, we can note that ARCHISSUR continues
to perform well in higher dimensions with a final
mean relative error 2.1 times lower than a naive
method with far more regular results and 4.2 times
lower than a crude Maximin DoE.

The Figures 8 and 9 show the evolution of the
true negative and positives rates critN and critP
during the runs of both naive and ARCHISSUR
algorithms. From these Figures, it can be noted
that ARCHISSUR achieves better and more reg-
ular predictions of the feasible set.

Independently from the results, the computa-
tional times of the different criteria were assessed
on this test case and are given in Table 4.
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Fig. 2: Evolution of the relative error on the feasible set critF as a function of the number of enrichment
points for the Branin based example

Fig. 3: Evolution of the true positives critP and true negatives critN rates as a function of the number
of enrichment points throughout a run of ARCHISSUR on the Branin based example

Method E[critF ] CoV (critF )

GPC (Bachoc et al, 2020) 2.24× 10−1 0.86

ARCHISSUR 5.3× 10−2 0.38

MIX 1.12× 10−1 1.11

Table 3: Ten inputs example — mean and coef-
ficient of variation (CoV) of the relative error
critF (28) for each method applied on the ten-
dimensional example

We can note that the numerical cost of
ARCHISSUR with a batch of two points goes up

Method CPU time (s)
ARCHISSUR 0.363

ARCHISSUR BATCH (2 points) 4.529
ARCHISSUR with formulation 12 1.670

SMOCU 7.58

Table 4: Mean System and User CPU time sum
(in seconds) on 10 repetitions for each criterion
evaluation with 10000 integration points x on the
ten-dimensional test case

significantly in comparison to the times measured
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Fig. 4: Evolution of the true positives critP and true negatives critN rates as a function of the number
of enrichment points throughout a run of SMOCU on the Branin based example

Fig. 5: Evolution of the true positives critP and true negatives critN rates as a function of the number
of enrichment points throughout a run of ARCHISSUR with a batch of two points on the Branin based
example

in two dimensions. Combined with the cost of opti-
mization in ten dimensions, the use of a batch
strategy becomes quickly intractable.

5.4 Hidden constraint study of a
wind turbine damage
computation code

5.4.1 Description of the problem

In this section, the damage prediction of an
onshore wind turbine NREL 5MW is studied. As

illustrated on Figure 10, the wind turbine is sub-
ject to several wind loads that cause damage at
the base of the tower. The computation of the
damage involves the use of the open-source multi-
physics simulator FAST (Jonkman and Buhl Jr.,
2005) taking as inputs four environmental vari-
ables that concerns the wind loads. The simulator
provides an estimation of one hour damage for 36
regularly spaced impact points that represent the
damages on the whole wind turbine base of the
tower circumference.
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Fig. 6: Evolution of the true positives critP and true negatives critN rates as a function of the number
of enrichment points throughout a run of the naive algorithm on the Branin based example

Fig. 7: Evolution of the relative error on the feasible set critF as a function of the number of enrichment
points for the ten dimensional example

The wind direction θwind influence on the dam-
age is considered negligible and this parameter
is fixed to 30◦. Hence, the damage d computa-
tion depends on the three following parameters:
the mean wind speed in the 10-minute interval:
Ū , the turbulence intensity: TI and the misalign-
ment angle of the wind turbine blades: NacY aw.
These parameters are supposed to be uncertain
and are modeled by independent random vari-
ables following probability distributions given in
Table 5.

Input Ū T I NacY aw
Unit m/s % ◦

Probability law Uniform Uniform Uniform
minimum 10 2.5 -20
maximum 22 25 20

Table 5: Probability distributions of the wind tur-
bine problem parameters.

Moreover, the wind is modeled by a
stochastic process and for each set of inputs
(Ū , T I,NacY aw) realizations of the wind are
simulated using the open source software Turbsim
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Fig. 8: Evolution of the true positives critP and true negatives critN rates as a function of the number
of enrichment points throughout a run of the naive algorithm on the ten-dimensional example

Fig. 9: Evolution of the true positives critP and true negatives critN rates as a function of the number
of enrichment points throughout a run of ARCHISSUR algorithm on the ten-dimensional example

(Jonkman and Buhl Jr., 2006). In the following,
we chose arbitrarily to fix the number of wind
realizations to 18 per input set.

However, FAST and/or the Turbsim simu-
lators encounter simulation crash due to poor
convergence for some values of the inputs. The
feasible domain can thus be estimated in this test
case in order to avoid simulation failures when
predicting damage values. We consider that a
simulation fails for an input set when a failure

happens for at least one wind realization.

This test case is interesting as it allows to test
the algorithms on a real physical problem on one
side and is numerically affordable enough to sim-
ulate test points to have a picture of the feasible
domain on the other. Indeed, short-term wind sim-
ulation and a rather small number of uncertain
variables are considered, leading to a few minutes-
long simulation with parallelization use. Thus, we
have simulated 3000 test points whose classifica-
tion in regards to simulation failure is plotted on
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Fig. 10: Diagram of an onshore wind turbine sub-
ject to wind loads described by 4 parameters: wind
speed Ū , wind direction θwind, turbulence inten-
sity TI and misalignment angle NacY aw.

Figure 11a. On this Figure, it can be observed that
the feasible and unfeasible domains can be rather
well differentiated. But we can also note that the
frontiers are blurred and detect the presence of
some outliers. Moreover, the feasible domain cov-
erage, estimated from these test points, is about
58.8% of the domain.

5.4.2 Results

Contrary to the previous example, the hidden
constraint is non-deterministic due to the stochas-
ticity of the wind. As indicated in the previous
section, the learning algorithm might encounter
outliers and the GPC model is challenged by a
blurred limit.

Thus, in order to get a more realistic modelling
of the problem we consider a noisy latent GP. Con-
sidering independent homoscedastic noise σn, the
prior kZθ (x,x) becomes:

kZθ,σn
(x,x) = kZθ (x,x) + σnIn (36)

In this model, the noise is an additional hyperpa-
rameter to be optimized by maximisation of the
likelihood (MLE) as presented in Section 3.

The ARCHISSUR method with and with-
out noise and the SMOCU algorithms have been
applied on this example. All methods were run for

the same 20 initial DoEs of 20 samples, a bud-
get of 200 enrichment points and 5000 integration
points. The error indicators were computed on the
basis of the same 3000 test points.

The evolution of the relative error through
the run of each active learning method are pre-
sented on Figure 12. This Figure shows that the
use of a noisy model greatly improves the results
of ARCHISSUR. Moreover, it can be observed
that the relative error decreases faster using
ARCHISSUR with noisy GPC than SMOCU.
Both methods achieve an almost constant relative
error value between 0.10 and 0.12, which is mainly
due to the non-regularity of the test points at the
frontiers of the feasible set.

The Figures 13 and 14 show the evolution of
critN and critP during the runs of respectively
ARCHISSUR with noisy GPC and SMOCU meth-
ods. We can note that both methods assess a true
positive rate of 0.95 and a true positive rate of
0.925, which confirms the observation made with
the relative error critF .

Finally, we provide on Figure 11b an exam-
ple of the classification of the test points (see
Figure 11a to observe the true class of each point)
obtained at the end of a run of ARCHISSUR with
a noisy GPC. This Figure allows to verify the con-
clusion drawn from the observation of the error
reduction limit, i.e. the classification of the points
at the border is more regular than the reality and
the model obviously does not predict outliers.
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(a) Wind turbine damage simulated points classi-
fication: purple dots account for failed simulations
and yellow dots for converged points

(b) Example of the classification obtained at the
end of a run of ARCHISSUR with noisy GPC on
the wind turbine test case

Fig. 11: Wind turbine damage validation points

Fig. 12: Evolution of the relative error on the feasible set critF as a function of the number of enrichment
points for the wind turbine test case
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Fig. 13: Evolution of the true positives critP and true negatives critN rates as a function of the number
of enrichment points throughout a run of ARCHISSUR with noisy GPC on the wind turbine test case

Fig. 14: Evolution of the true positives critP and true negatives critN rates as a function of the number
of enrichment points throughout a run of SMOCU on the wind turbine test case

5.5 Discussion and conclusions

In this paper, we proposed a GPC active learning
method based on Stepwise Uncertainty Reduction
strategies to assess hidden constraints prediction.
We provided a formulation of the enrichment crite-
ria suited for classification that is less numerically
expensive and that allows the selection of a batch
of multiple points at a time in order to improve
the classification model.

The proposed algorithm was benchmarked
with other methods on three different applica-
tions: two analytical examples and an industrial

case. In the different applications, we have high-
lighted the importance of the choice of the GPC
model for the performances of the algorithm.
Indeed, we have noticed that the GPC model
(Bachoc et al, 2020) shows improved performances
on completely deterministic hidden constraints. In
the non-determistic case, meaning outliers exist or
frontiers between feasible and unfeasible domains
are blurred, a smoother model performs better.
Hence, more accurate predictions were achieved
by using a noisy GPC model in this context.
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Moreover, we have observed that the use of
the batch strategy becomes quickly untractable
when the problem dimension increases. Future
work should involve an improvement of the learn-
ing function to allow the use of the batch strategy.

Another perspective of this work is its use in
constrained optimization. Indeed, hidden crash
constraints are a well-known problem in design
optimization. However, the learning of crash
constraints is usually done using the points pro-
posed by the optimizer. Hence, an interesting
perspective could be to combine it wisely with
the learning of crash constraints themselves.

In order to avoid the costly MC probability
estimation (7), a final opening for further work
could be to consider the problem without the
introduction of a latent space by directly express-
ing the feasibility probability pn as the result of a
conditional Bernoulli model (Dai et al, 2013).

Acknowledgments. This work was supported
by the French National Research Agency (ANR)
through the SAMOURAI project under grant
ANR20-CE46-0013.

Appendix A Mean Objective
Cost of
Uncertainty

The Mean Objective Cost of Uncertainty (MOCU)
function as defined in (Yoon et al, 2013) is written
with our notations as follows

UMOCU (xn+1)
= EYn(xn+1)[EX [1−max(pn+1(X), 1− pn+1(X))|X ,Y]]

−EX [1−max (pn(X), 1− pn(X))] .
(A1)

In fact:

EX [1−max (pn(X), 1− pn(X))]
=
∫
Ω
1−max (pn(x), 1− pn(x)) dx

=
∫
Ω
(1− pn(x))1pn(x)≥1/2dx+

∫
Ω
pn(x)1pn(x)<1/2dx

=
∫
Q1/2

pn(x)dx+
∫
QC

1/2

1− pn(x)dx

= V arn(Γ)
(A2)

with
Q1/2 = {x ∈ Ω : pn(x) ≥ 1/2}. (A3)

Similarly, we have

EX [1−max (pn+1(X), 1− pn+1(X))] = V arn+1(Γ).
(A4)

Hence, the MOCU function can also be expressed
as

UMOCU (xn+1) = En[V arn+1(Γ)]− V arn(Γ)
(A5)

where V arn(Γ) is given by (19) with α = 1/2.
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