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Context and problem formulation

Functions defined over sets of vectors
In this presentation, we consider functions having inputs in the form of sets of vectors (or
points). In the following we consider the notations below:
• X : space of all sets of n unordered points {x1, . . . , xn} where xi ∈ Rd , i = 1, . . . , n and
n1 ≤ n ≤ n2.

• X ∈ X is a set of points and will be referred to as a cloud of points. Compared to an
(ordered) list of points, X is invariant with respect to any point permutation.

• F : set of functions over clouds of points, F : X → R, X 7→ F (X ).
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Related works and topics

Learning functions defined over sets of objects with kernels
• Kernels on bags of vectors, applied to SVM Classification on images in [7].
• Same technique to define kernel on graphs by averaging over kernels between paths in [13]

to measure similarity between shapes.
• Classification on text data with a set representation view in [14].
• A Kernel between sets of points is used in [5] to optimize the layout of a wind farm.

Focus of this presentation
• In this presentation,we discuss some general methods to construct such kernels.
• Compare them numerically on a a test function mimicking the production of a windfarm.
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Bayesian Approach

A Gaussian process prior
• Gaussian processes are defined by a mean function m and a covariance kernel k over the

input spaces X ; it can be used as a prior law to approximate a costly function F ∈ F .
• Observing D = {(X1, y1)...(XN , yN)} where Xi ∈ X and y ∈ R as training data with
yi = f (Xi ), the predictive mean and covariance F (X ) at a new point X are given by:

µ(X ;D) = m(X ) + K (X ,X )TK (X,X)−1(y −m(X))

Σ(X ,X ;D) = K (X ,X )− K (X,X )TK (X,X)−1K (X,X )

with X = [X1, ...,XN ] and y = [y1, ..., yN ]

Necessary Conditions on k
• k must be symmetric and positive definite, i.e, for any M distinct clouds of points, for any

vector c ∈ RM , the following inequality must hold:
∑M

i=1
∑M

j=1 cicjk(Xi ,Xj) ≥ 0
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Bayesian approach: kernel trick and mapping

Comparing two clouds of points
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Aronszajn Theorem, explicit and implicit mappings

Feature Mapping, Aronszajn (1950)
Theoreme, Aronszajn [1]
k is a positive definite kernel if and only if there exists a Hilbert space H, and a function
ϕ : X 7−→ H such that ∀X ,X ′, k(X ,X ′) = ⟨ϕ(X ), ϕ(X ′)⟩H.

Explicit and implicit mappings
• Explicit mapping: in some cases ϕ and the scalar product, ⟨., .⟩H are known by definition

or by construction
• Implicit mapping : in some cases, we just use the compact formula of k
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Substitution with Hilbertian Distance

Substitution with Exponential

• Firstly, we consider covariance kernels of the form: k(X ,X ′) = σ2exp(−Ψ(X ,X ′)
2θ2 ).

• Semi-definite positiveness is equivalent to Ψ being Hermitian (symmetric in the real case)
and conditionally negative semi-definite [2].

• In other words, for any M distinct points and c ∈ RM with
∑M

i=1 ci = 0, the following
inequality must hold:

∑M
i=1

∑M
j=1 cicjΨ(Xi ,Xj) ≤ 0

Metric Cases
• We consider cases where Ψ(X ,X ′) = d(X̃ , X̃ ′)2

• d is the distance between X̃ and X̃ ′ the respective images of X and X’ into a known metric
Space.

• The above conditions are equivalent to ensuring that the metric be Hilbertian, as stated
in Haasdonk and Bahlmann [8].
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How to construct X̃ and X̃ ′ ?

With probabilities
Suppose we have two clouds X = (x1, ..xn), X ′ = (x ′1, ..., x

′
m)

• Case 1 : Define X̃ := PX = 1
n

∑n
i=1 δxi and X̃ ′ := P ′

X = 1
m

∑m
j=1 δx ′j , the respective

associated empirical uniform distributions.
• Case 2 : Define X̃ = NX (mX ,ΣX ) and X̃ ′ = N ′

X (m
′
X ,Σ

′
X ) with mX = 1

n

∑n
i=1 xi ,

ΣX = 1
n

∑n
i=1(xi −mX )(xi −mX )

T and likewise for m′
X ,Σ

′
X .

With vectors : vectorization
• X̃ and X̃ ′ can be two vectors of characteristic features of the clouds.

What distances between X̃ and X̃ ′ or mappings ?

We discuss in the following the candidates distances to define d(X̃ , X̃ ′) ?
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Sliced Wasserstein Distance and Gaussian approximation

Wasserstein Distances
For two measures µ and ν defined over a space M, the Wasserstein distance of positive cost
function ρ and order p is defined as follows : W p

p = infπ∈Π(µ,ν)
∫
M×M ρ(x , x ′)pdπ(x , x ′)

Substitution with Hilbertian distance : Sliced Wasserstein Distance (see Annex)
• Let S = {α ∈ R2, ||α|| = 1}. Consider the projected empirical measure of PX on the line

directed by α ∈ S denoted α ∗ PX with : α ∗ PX = 1
n

∑n
i=1 δ<xi ,α>

• SW 2
2 (PX ,PX ′) =

∫
S W2

2 (α ∗ PX , α ∗ PX ′)dα. Implementation using POT [6].

• The covariance kernel k(X ,X ′) = σ2exp(−SW 2
2 (PX ,PX ′ )

2θ2 ) is symmetric and positive
semi-definite as in Carriere, Cuturi, and Oudot [4]. It will be denoted kSWS .

Approximate For Gaussian Modeling (see Annex) , kSWG

W 2
2 ≈ ||mX −mX ′ ||2 + ||Σ1/2

X − Σ
1/2
X ′ ||2Frobenius as in Bui et al. [3] (= if Σ1/2

X Σ
1/2
X ′ = Σ

1/2
X ′ Σ

1/2
X
10 / 30



Distance between embedded laws : Maximum Mean Discrepancy

Substitution with Hilbertian distance: MMD
• Suppose there exists a Reproducing Kernel Hilbert Space, H with a characteristic kernel.
• The characteristic nature guarantees the injectivity of the embedding map Muandet et al.

[11]: PX 7−→ µX (.) =
∫
PX (x)kH(x , .)dx .

• MMD2(PX ,PX ′) = ||µX − µ′
X ||2H

• For any kernel kH of the RKHS, and any uniform discrete laws: MMD2(PX ,PX ′) =
1
n2

∑n
i=1

∑n
j=1 kH(xi , xj) +

1
m2

∑m
i=1

∑m
j=1 kH(x

′
i , x

′
j )− 2 1

nm

∑n
i=1

∑m
j=1 kH(xi , x

′
j )

• The covariance kernel k(X ,X ′) = σ2exp(− ||µX−µX ′ ||2H
2θ2 ) is symmetric and positive definite.

• We will denote the latter as kMMD.
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Constructing Features of a cloud

Relevant Features Map Kernel

• We consider a final kernel of the form k(X ,X ′) = σ2 exp
(
−
∑o

j=1
|wj (X )−wj (X

′)|2
θ′j

2

)
with

(w1(X ), ...,wo(X ) a vector of features.
• As features we consider:

• The coordinates of the mean
• the eigenvalues and eigenvectors of the empirical covariance matrix.
• the number of points in the set
• Greatest and shortest distances between points of the set.

• This kernel will be called Relevant Feature Kernel and denoted kRFK
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Explicit Mappings: Probability Product Kernels and Embeddings

Explicit Mappings (see Annex)
• Recall k(X ,X ′) =< ϕ(X ), ϕ(X ′) >

• We consider first a case where the mapping ϕ(X ) = Pρ
X with ρ ∈]0, 1] where PX is an

underlying empirical distribution.
• A possible kernel: k(X ,X ′) =

∫
Ω
P(x)ρP ′ρ(x)dx , Jebara and Kondor [9]. This family of

kernels are called Probability Product Kernels. For two Gaussians PX = N (µ,Σ) and
PX ′ = N (µ′,Σ′) , one gets:

k(X ,X ′) = (2π)(1−2ρ)D/2|Σ+|1/2|Σ|−ρ/2|Σ|−ρ/2 exp
(
−ρ

2
µ⊤Σ−1µ−ρ

2
µ′⊤Σ′−1µ′+

1
2
µ+⊤Σ+⊤µ+

)
where Σ+ = (ρΣ−1 + ρΣ−1)−1 and µ+ = ρΣ−1µ+ ρΣ′−1µ′

• If ρ = 1
2 , it is called the Bhattacharrya Kernel and when ρ = 1 Expected Likelihood Kernel.

• ϕ(X ) = µX where µX is the embedding of the underlying empirical distribution into an
RKHS. k(X ,X ′) =< µX , µX ′ > it will be called MMK, Mean Map Kernel and denoted
kMMK for the remainder.

13 / 30



A test function

Mimicking wind farms
• We consider the following family of test functions mimicking wind-farms productions

F ({x1, ..., xn}) =
n∑

i=1

( ∏
j , j ̸= i

fp(xj , xi )

)
f0(xi ) (1)

where fp(xj , xi ) expresses the energy loss over xi that is caused by xj and f0 is a constant.
xi ∈ R2 and n ∈ {10, 11, .., 20}

• The function xi 7−→ fp(xj , xi ) can be parameterized differently:

• It can be unidirectional with an arbitrary angle.
• It can be multi-directional
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A test function

Mimicking wind farms :Example
In the following we represent: xi 7−→ fp(x0, xi ) on the left, f with a one varying point on the
right. We note F with fp on left F0.

Mimicking wind farms : Illustration
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A test function

Mimicking wind farms : Example
In the following we represent: xi 7−→ fp(x0, xi ) with π/4 rotated direction, and 40 directions on
the right.We note F with fp on left F45 and F40d for the fp on the right.

Mimicking wind farms : Illustration
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Preleminary Results: 0°Interaction Function
- Modeling with Gaussians distributions is weaker than with discrete uniform ones for this
function.
- Sliced Wasserstein Kernel is very competitive with Relevant Feature Kernel. MMD works best!
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Figure: Prection Results of the eight Kenrels on 0° direction Interaction Function
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Results: 45° direction Interaction
- 45° direction does not change performance for lot of kernels but Feature Map Kernel .
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Figure: Prediction performance on 45° direction Interaction Function
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Preleminary Results: 40 directions integrated
- 40 directions integrated Function improves slightly Gaussian based kernels.
- MMD shows better results than Relevant Feature kernel and Sliced Wasserstein
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Figure: Prediction performance on 40 directions integrated function
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Summary

Table: Summary of the Q2 observed : Battacha refers to Bhattacharrya kernel, RFK (Relevant Feture kernel),
SWS (Sliced Wasserstein subs), GWS (Gaussian Wasserstein subs)

Function
Kernels MMD MMK Battacha RFK SWS GWS

F0 0.917 0.711 0.144 0.813 0.812 0.174
F45 0.887 0.739 0.186 0.74 0.841 0.189
F40d 0.88 0.279 0.314 0.688 0.798 0.259

• MMD-based kernels remain the most robust. MMK fails to model a lot of directions
integrated.

• Modeling clouds as Gaussian distributions performs poorly when dealing with discrete
uniform modelization.

• SWS and RFK are very competitive with MMD.
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Focus on MMD :The choice of the embedding kernel kH

• We have PX 7−→ µX (.) =
∫
PX (x)kH(x , .)dx

• Candidates kH: Squared Exponential(S Exp), Exponential(Exp), Matern32, Matern52
• Test performance predictions on unseen clouds after training.
• Same methodology from a lower dimension has not a great effect .

Table: Result about the influence of kH

kH S Exp Exp Matern32 Matern52
Q2 on F0 0.894 0.917 0.911 0.906
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Making kMMD translation invariant

• We make kMMD invariant under translation.
• For this we center the clouds before computing kMMD .
• The objective is to force kMMD to be as F0

• The results are the following with different kH
• The performances are approximately the same.

Table: Results : centered (c) vs non-centered (nc)

kH S Exp Exp Matern32 Matern52
Q2 on F0 (c) 0.894 0.917 0.911 0.906
Q2 on F0 (nc) 0.899 0.912 0.911 0.908
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Embedding sensitivity and F0

• We take kH(xi , xj) = exp
(
− |xi,1−xj,1|

2θ2
1

− |xi,2−xj,2|
2θ2

2

)
• We compare the sensitivity of ⟨µX , µX ⟩ with respect to F0 concerning horizontal and

vertical dilatations.
• The hyper-parameters are estimated by maximizing Log-likelihood allow ⟨µX , µX ⟩ to

behave differently under horizontal and vertical dilatations.
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Figure: Representation of the sensitivity of F0 (left) and Norm of Embedding (MMD) (right) with respect to
horizontal and vertical expansion of the clouds. The average observations over 300 clouds is represented. 23 / 30



Embedding sensitivity and F45

• The particularity of F45 is that the angle of interaction is π/4.
• The function has the same sensitivity to horizontal and vertical dilatations of clouds.
• We find anew this property in ⟨µX , µX ⟩
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Figure: Representation of the sensitivity of F45 (left) and Norm of Embedding (MMD) (right) with respect to
horizontal and vertical expansion of the clouds. The average observations over 300 clouds is represented.
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Embedding sensitivity and F40d

• We have the same observations on F40d as previously.
• Conclusion regarding MMD ⟨µX , µX ⟩ is sensitive in the same way as the functions of

interest.
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Figure: Representation of the sensitivity of F40d (left) and Norm of Embedding (MMD) (right) with respect to
horizontal and vertical expansion of the clouds. The average observations over 300 clouds is represented.
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Perspectives

Scientific Perspectives
• Concerning Relevant Feature kernel, find automatically the most relevant features for a

given function
• For MMD and MMK, model with non uniform probabilities. Considering different

weights on points could allow giving more importance to some specific points of the cloud.
• Define the directions of Sliced Wasserstein Distance by Log Likelihood.
• Apply to TOPFARM industrial usecase.
• Perform Bayesian optimization on the layout of the windfarm.

26 / 30



Thanks For Your Attention !
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Distance between laws: Wasserstein Distance

Substitution with Hilbertian distance : Wasserstein Distance in 1D Case
• Definition and properties see Carriere, Cuturi, and Oudot [4] and Kolouri, Zou, and Rohde

[10]
• Let µ and ν be two nonnegative measures in R with µ(R) = ν(R) = 1. The Wasserstein

distance of order 2 between µ and ν is defined as folllows:

W2
2 (µ, ν) = inf

P∈Π(µ,ν)

∫ ∫
R×R

|x − x ′|2P(dx , dx ′)

• Let Cµ(x) =
∫ x
−∞ dµ, Cν(x) =

∫ x
−∞ dν their cumulative distribution function.

• Pseudo-inverse : ∀r ∈ [0, 1], C−1
µ (r) = minx{x ∈ R ∪ {−∞} : Cµ(r) ≥ x}

• Then W2
2 (µ, ν) = ||C−1

µ − C−1
ν ||2Lp([0,1]), see Peyré, Cuturi, et al. [12]

• W2
2 (µ, ν) is symmetric and conditionally negative definite. (Kolouri, Zou, and Rohde [10])

• If µ and ν are defined in R× R, the above condition is no longer guaranteed.
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Distance between laws: Wasserstein Distance between Gaussians

Substitution with Hilbertian distance: Wasserstein Distance Between Gaussians
• For two measures µ and ν defined over a space M, the Wasserstein distance of positive

cost function ρ and order p is defined as follows :
W p

p = infπ∈Π(µ,ν)

∫
M×M ρ(x , x ′)pdπ(x , x ′)

• We consider the case 2
• For an Euclidean cost in 2D , the Wasserstein distance of two Gaussians is given in a

closed form as : W 2
2 = ||mX −mX ′ ||2 + tr(ΣX +ΣX ′ − 2(Σ1/2

X ΣX ′Σ
1/2
X )1/2)

• Consider the version W 2
2 = ||mX −mX ′ ||2 + ||Σ1/2

X − Σ
1/2
X ′ ||2Frobenius as in Bui et al. [3]

• The above distance is conditionally negative definite and k(X ,X ′) = σ2exp(−W 2
2

2θ2 ) is
therefore a valid kernel.
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