

ELECTROLYTE THERMODYNAMICS REACTIVE SYSTEMS WITH MIXED SOLVENTS

Industrial & Technical context

New processes involve electrolytic systems including ionic species and chemical reactions

• Transformation of biomass

Battery

● CO₂ capture

- Geothermal context
- Metal purification and recycling

0....

 Need of methodologies and benchmark of process solutions
proposal of the JIP Elether2

Need for

- Reaction constants
- Non-ideality model
- Algorithm to compute equilibrium

Apparent species differ from true species ⇒ Parameterization involves many more compounds ⇒ identify best practices ⇒ Promote collaborative work

AIM OF THE JIP

Create a peer network in the industrial (and later academic) community to promote work on Electrolyte Thermodynamics

• Develop **best practices** for the workflow :

→Use statistical models

- molecular simulation
- SAFT equation of state

• ...

- →extrapolate T/P/salinity range
- ➔ identify limits where new data are needed

Correlative models calibration

→Use experimental data and « pseudo-experimental » data to calibrate an industrial model (correlative model)

HA

 H_3O^+

Effect of acid/base **B**⁺ A⁻ **Co-solvent**

AB

Water Effect of co-solvent

OH⁻

BOH

CASE STUDY ANALYSIS

the second the second second

OUTLINE

Introduction

• Water + salt

- Mixed solvent + salt
- Quaternary analysis
- Parameterization of a ternary system
- Back to some fundamentals: how to improve predictivity
- Conclude / perspectives

WATER + SALT

MIAC vs molality

Santiago Vaque Aura et al: « Data analysis for electrolyte systems : a method illustrated on alkali halides in water » 2021, JCED, Vol 66, p 2976-2990

WATER + METHANOL + SALT

WATER + SALT + ALCOHOL

Yang et al. : »A Benchmark Database for Mixed-Solvent Electrolyte Solutions: Consistency Analysis Using E-NRT » 2022, IECR, Vol 61, 42, 15576-15593

fraction of 1-propanol

QUATERNARY

Consider 10 moles of water; 3 moles of ethanol and 1 mol of « salt » (NaOH + Hac)

PRESSURE IS ALMOST DIRECTLY RELATED TO IONIC STRENGTH!

Quaternary system at 25°C

CALCULATIONS AT DEFAULT CONDITIONS (VALUES)

Energies nouvelles

DATA ANALYSIS

Water/Methanol/Potassium acetate

DATA ANALYSIS

1

15

2021 | FPEN

LEVEL OF INVESTIGATION

• Level 1: apparent composition

• May be convenient when only apparent properties are needed (here solvent properties)

• Level 2: true composition

• Many more species to parameterize

Apparent	True	Liquid	vapour	solid	
_					
water	water	Х	Х		
	H3O+	х			
	OH-	x			
cosolvent	cosolvent	x	x		
	НА	x	x		
A-	A-	x			
	вон	x	х		
B+	B+	х			
	AB	х		x	

We select here this solution because that is what industrial partners use (eNRTL within Aspen)

Ionic strength is made visible

INVESTIGATION USING DATA Water H3O+ OH-Ternary VLE (isobar : 1 bar, T = 375-393K) Vercher, E.; Vazquez, M.I.; Martinez-Andreu, A., J. Chem. Eng. Data 48 (2003) 217-220. HAc NaAc NaOH • **Objective** = relative volatility of molecular species Na+ Acin presence of salts ethanol W+NaAc Ion pairing should be considered always • MIAC (298.15K) Has a large effect on ionic strength and therefore on R.A. Robinson, R.H. Stokes, HACK W. AC + H 0. T.Faraday Soc. 45 (1949) 612-624. Nahe **Total dissociation!** volatilities O.D. Bonner, J.Sol.Chem. 17 (1988) 999-1002 VLE (isotherms : 278.15-310K) * 1/2* NaAc \Rightarrow Ac + Na R.A. Robinson, R.H. Stokes, T.Faraday Soc. 45 (1949) 612-624. NaAc NaAc ● VLE (isobar : 1 bar = 372-382K) No dissociation! E. Vercher, M.I. Vázquez, A. Martínez-Andreu, J. Chem. Eng. Data 48 (2003) 217-220. Binary HAc + NaAc VLE (isobar : 1 bar, T = 390-398K) Vercher, E.; Vazquez, M.I.; Martinez-Andreu, A., J. Chem. Eng. Data 48 (2003) 217-220.

MODELING + PARAMETERIZATION APPROACH

Modeling approach:

- CPA model in vapour phase with BIPs
- Activity coefficient in liquid phase calculated using eNRTL
 - > Aspen parameters are kept if available and *if possible*
 - Otherwise, NRTL parameter fitting,

Considered compounds:

> Water	W	W
Sodium Acetate	NaAc	S
	Na+	i
	Ac-	i
Acetic acid	Нас	а

Proposed fitting approach

- $\circ \tau_{ws} / \tau_{sw}$ from Aspen kept unchanged
- $\bullet \tau_{as} / \tau_{sa}$ fit on Hac-NaAc bin data
- $\bullet \tau_{ai}^{}/\tau_{ia}^{} \& \tau_{wi}^{}/\tau_{iw}^{}$ fit on W-NaAc bin and ter data

w: water a: acid $i: ions(Na^+, Ac^-)$ s: salt(NaAc)

WATER-IONS & HAC-IONS PARAMETER FITTING

 In most of cases, response surfaces show valleys
parameters are intercorrelated

 Valleys are very steep
sensitive; wrong parameters may lead to irrealistic response

• tiw is most important, then tia

 Attempts have been made to reduce the number of parameters yet no significant success achieved

Parameter set AS1

TERNARY PD

Parameter set AS2

Reasonable deviations with regressed parameters

Two (at least) parameter sets provide equivalent results

20 | © 2016 IFPEN

Speciation picture is very different!

4. TERNARY PD : SPECIATION

Parameter set AS1

Parameter set AS2

NaAc > Na+ = OH- > Ac-

 \cap

 $\gamma_i = \frac{y_i \times P}{x_i \times P_i^{\sigma}}$

MODEL IMPACT ON SOLVENTS ACTIVITY COEFFICIENTS

• Salting effect with MSI_2:

Activity coefficient of solvents can be estimated via VLE:

SALTING OUT = EFFECT OF THE IONS ON THE ACTIVITY COEFFICIENT OF THE SOLVENTS

Contributions of the PDH, Born, and NRTL terms to the total $\Delta \ln(\gamma)$ for (a) alcohol, (b) water

FINAL COMMENTS: SOME ACHIEVEMENTS WITHIN JIP

➔ Internal consistency analysis: evaluate deviations from a consistent model (eNRTL)

External consistency:

evaluate trend in parameter values ; Allows identifying missing data

→Use statistical models

- molecular simulation
- SAFT equation of state
- •

. . .

→Use graphical extrapolations Using adequate descriptors (model parameters)

Correlative models calibration

Select validated data
Various oigins so as to cover complementary information
Construct objective function
So that all subfunctions carry equivalent weight
Analyze response surfaces
Not all parameters are equally sensitive

For further progress on this topic:

- Quaternary data are missing
- Investigate link between salting in/out and speciation

Gibbs-Duhem links the two properties for binaries only

WORK WITHIN JIP2

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

Contribution of the terms

The behavior of the model is largely dominated by the NRTL term.

Gibbs energy of transfer

In contrast to what is usually claimed, the Born term on its own is not sufficient for describing the Gibbs energy of transfer.

2. BINARY HAC-NAAC

• Regression of **HAc-NaAc (a-s)** parameters

	TijO	TijT	Tji0	TjiT	Alfaij	Origin
Hac-NaAc	-21.5843	0	2.74066	0	0.1	Aspen
Hac-NaAc	-0.75845	0	22.45050	0	0.1	REG_VLE

NaAc

ÉNERGIES NOUVELLES

3. BINARY WATER-NAAC

ÉNERGIES NOUVELLES

• MIAC (298.15K)

R.A. Robinson, R.H. Stokes, T.Faraday Soc. 45 (1949) 612–624.

O.D. Bonner, J.Sol.Chem. 17 (1988) 999–1002

• VLE (isotherms : 278.15-310K)

R.A. Robinson, R.H. Stokes, T.Faraday Soc. 45 (1949) 612–624.

• VLE (isobar : 1 bar = 372-382K)

E. Vercher, M.I. Vázquez, A. Martínez-Andreu, J. Chem. Eng. Data 48 (2003) 217–220.

Aspen parameters, FD option

• New parameters, PD, X6 isotherms 4 3 2 % deviation on P 1 MIAC at 25°C 0 0 -1 22220000 -2 -3 -4 Molality NaAc isobar deviations 2.5 2 16 10 12 14 0 2 4 6 8 • • % deviation on P Molality NaAc 1.5 •• 1 0.5

0

molality NaAc

-0.5

3. BINARY WATER-NAAC

3.5

3

2.5

0 2 MIM 1.5 2

1

0.5

0

ÉNERGIES NOUVELLES

IFP School Chair

PEnergies nouvelles

3. BINARY WATER-NAAC

• New parameters, PD, X6

 \Rightarrow Dissociation is strong at low concentration; less so at high concentration

 \Rightarrow Dissociation is strong at low temperature; less so at high temperature and high concentration

- \Rightarrow This is thanks to large activity coefficient of NaAc (up to 1000)
- \Rightarrow Some acetic acid (HAc) is formed together with OH-: it is more stable than Ac- (the solution is basic

ÉNERGIES NOUVELLES

4. TERNARY WATER-HAC-NAAC

ÉNERGIES NOUVELLES

Full dissociation

No dissociation

FD: OK for water PP; large deviations for Hac at high water mole fraction **ND**: OK when water concentration is small (below 40%); above large deviations

4. TERNARY PD_X8

Reasonable deviations with regressed parameters

Highest deviations observed for Hac in high dilution (water mole fraction > 0.8) At high water concentration:

- Low salt content: negative Hac deviation
- High salt content: positive HAc deviation

ÉNERGIES NOUVELLES

Energies

ÉNERGIES NOUVELLES

- Majority compounds are generally the ionic species (Na+ = Ac-)
- **o** Ionic species appear even at very low water content
- $\,\circ\,\,$ Solution is slightly basic [OH-] ~0.01%
- NaOH is negligible

Web site

Chemical&Engineering Data

pubs.acs.org/jced

Article

ENGINEER SCIENCE

Data Analysis for Electrolyte Systems: A Method Illustrated on Alkali Halides in Water

Santiago Vaque Aura, Juan-Sebastian Roa Pinto, Nicolas Ferrando, Jean-Charles de Hemptinne,* Antoon ten Kate, Susanna Kuitunen, Nikolaos Diamantonis, Thomas Gerlach, Manfred Heilig, Gaetan Becker, and Mathias Brehelin

Publications

EFCE Webinar

- Vaque-Aura
- Tsanas et al (reactive fl
- Yang et al (ERC, submit

Chemical Engineering Science

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ces

Calculation of phase and chemical equilibrium for multiple ion-containing phases including stability analysis

Christos Tsanas, Jean-Charles de Hemptinne*, Pascal Mougin

Contribution to an active community:

- DTU ERC with four academic partners
- EleTher chair : 2 PhD

