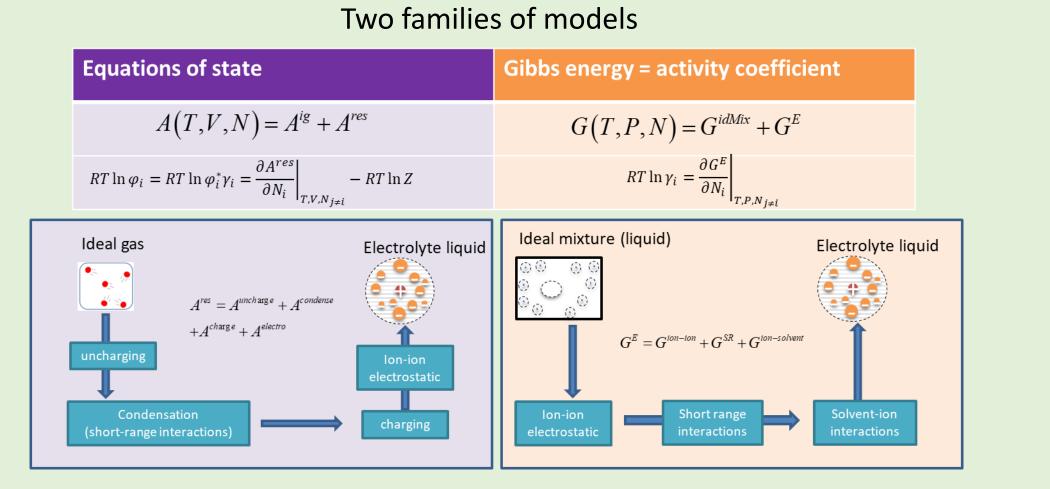

Ele-Ther:

E-Thermodynamics Joint Industrial Project (JIP)


DE HEMPTINNE, Jean-Charles¹; NGO, Tri-Dat¹; MAGHSOODLOO, Saheb¹; BAUDOUIN, Olivier²; MOINE, Edouard²; MARIBO-MOGENSEN, Bjorn³; WANG, Shu⁴; ALTUNTEPE, Emrah⁵; ASENSIO, Salvador⁶; DOHRN, Ralf⁷; FERRARI, Pascal⁸; HEILIG, Manfred⁹; KUITUNEN, Susanna¹¹

Challenge 3: Non-ideality model : In all cases need for parameters

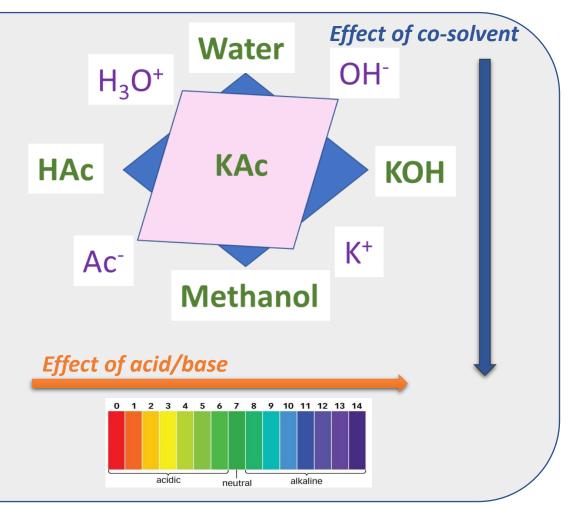
 \Rightarrow Need for data

 \Rightarrow Need for an appropriate regression procedure

 $\gamma_i = \frac{y_i \times P}{P}$

 $x_i \times P_i^{\sigma}$

	E-Eos	Pitzer	MSE	e_NRTL/ eUNIQUAC	SIT				
Application fields	General phase equilibrium calculations	Geoscience and chemical industry	Corrosion processes. Oil and gas production (upstream). HPHT conditions	General phase equilibrium calculations; chemical industry.	Coordination chemistry (complex formation)				
Advantages	Use of statistical thermodynamic concepts to improve predictivity Capable to describe derivative properties + critical points	Accessible and versatile. Availability of parameter in data base. Valid for ternary systems at high concentrations	Mixed solvents Valid for systems with two potential electrolyte phases (LLE). Includes pressure- dependent parameters	Mixed solvents Flexibility, precise for different conditions Aspen recommended	Simple and pragmatic; only solute volatilities				
Disadvantages	Not mature Many different versions	Parameters difficult to determine experimentally. Only pure water solvent	Many parameters, property of OLI	The more binary parameters adjusted, less reliability on the extrapolation	No high concentrations Doesn't comply with Gibbs-Duhem: No solvents				
Number of parameters	Variable : aim for physical parameters so as to reduce its number	3 binary parameters + ternary parameters	6 pressure-dependent parameters	5 binary parameters	1 Parameter per ion pair				
Principle	Sum of residual Helmholtz energy functions	Interactions based on electrostatic forces and viral expansion	Include a middle-range interaction term instead of Born	Interactions based on the local composition	Linear correction beyond Extended Debye Hückel				

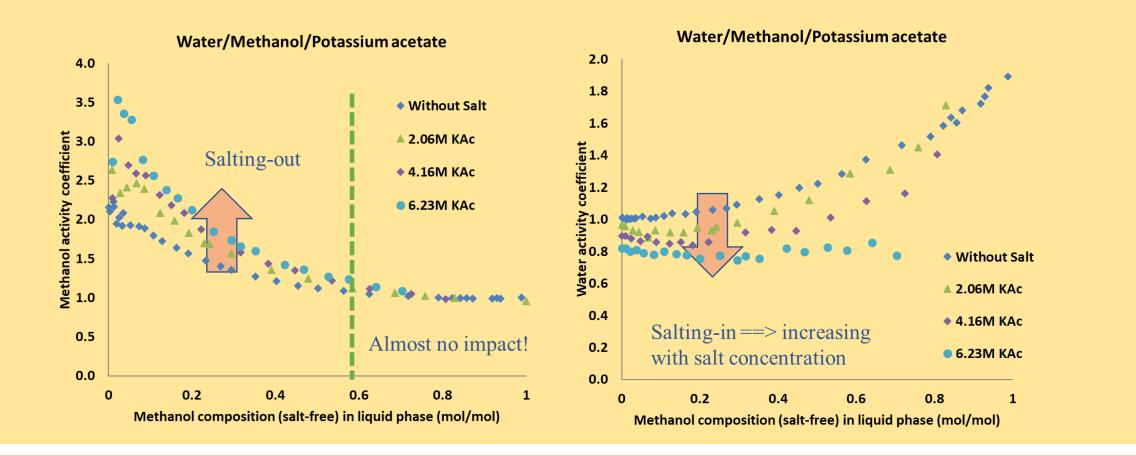

Design a case study that focuses on the fluid phase properties. A four-component system is selected:

- Water and a co-solvent (because in practice pure aqueous solutions are rare)
- An acid and a base (ideally one of them is weak): such system is \bullet used to buffer a solution

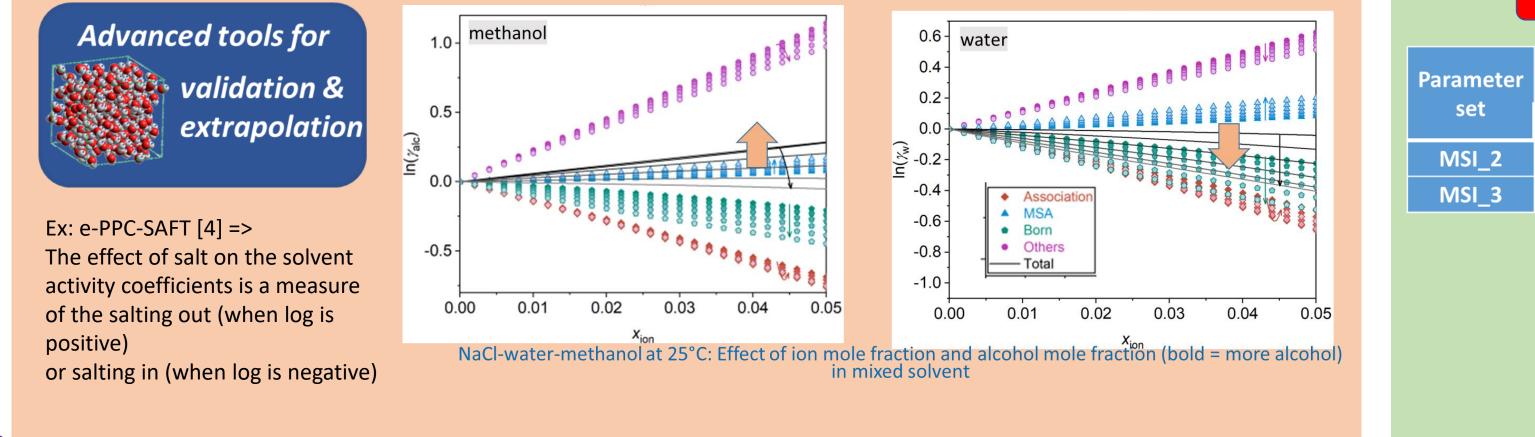
become a nine components system thus complexifying the parameterization

In practice, because of the reactions the four components system may

No data for such quaternary system could be found in the literature


We focus on **VLE & LLE** (volatilities ; salting in/salting out effects)

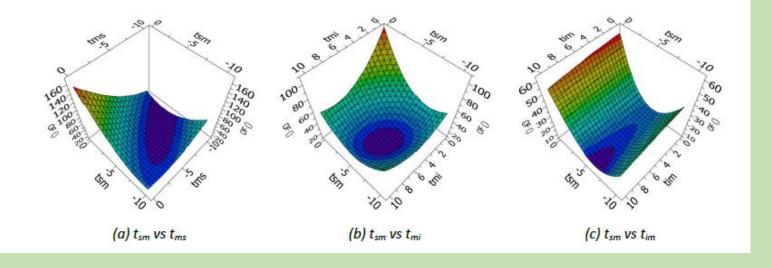
Best practices: 1. Data analysis = Evaluate trends


Internal consistency: check validity of data according to thermodynamic principles External consistency: evaluate trends comparing families of systems

Ex: ternaries PTxy data => plot the experimental solvent activity coefficients using The plot clearly shows the salting in and salting out effects [2,3]

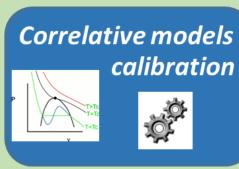
Best practices: 2. Data extrapolation (to process conditions)

= Identify a method that can replicate the trends (predictive modeling)



Best practices: 3. Industrial Model Calibration

Setup assumptions for the modelling :


- Choice of the model (here e-NRTL), dissociation scheme (here we checked full dissociation of the salt, partial and no dissociation),...
- Select the data and objective function (here Partial Pressures) Identify the parameters to be adjusted (here $\tau_{solvent-salt}$ from eNRTL) and those that can be set to some predefined values

use sensitivity analysis the objective function is insensitive to the parameter along the valley axis

Example with Water – KAc – Methanol ternary The full system contains both ion-pairs (KAc) and ionic species (K⁺ and Ac⁻) => it must be described with **Partial dissociation (PD)** • Proposed fitting approach $\mathbf{w}: water$ (Ac ⇔ K⁺ + A \mathbf{m} : methanol τ_{ws}/τ_{sw} from Aspen kept unchanged $\mathbf{i}: ions(K^+, Ac^-)$ **2.** τ_{wi}/τ_{iw} fit on bin data (W+KAc) $\mathbf{s}: salt(KAc)$ **3.** $\tau_{ms}/\tau_{sm} \otimes \tau_{mi}/\tau_{im}$ fit on (MeOH + KAc) bin and/or ter data No dissociation

Binary M+KAc Ternary Data only Binary +Ternary Data

meter	PD		PD		DI	PD
set	AAD%	6	AAD%			AAD%
SI_2	1.34		17.94			17.42
SI_3	1.36		18.29			17.77
		Parame set MSI_ MSI_	eter 2	Binary M+K ND AAD% 1.48 7.62	Ac	

Several (here two : MSI_2 & MSI_3) equivalent parameter sets can be found

In the absence of speciation data, the only way to distinguish them is to evaluate their quality by: - using ND hypothesis on binary system with methanol - using FD hypothesis on binary system with water

This is a consequence of the different speciation that results from the different parameter sets

→ Choice of parameter set

Conclusions and Perspectives

- EleTher JIP aims at creating an industrial network of electrolyte thermodynamics 1.
- Objective is to investigate a quaternary systems including mixed solvents and both weak and 2. strong electrolytic species
- Best practices for developing industrial models are based on three steps: data analysis -3. extrapolation using a physical approach – model calibration
- Further work to be performed on another case study / another modeling approach 4.
- For academic research: investigate the link between salting in/out and speciation 5.

References

- 1. Tsanas et al: « Calculation of phase and chemical equilibrium for multiple ion-containing phases including stability analysis" 2021, Chem. Eng. Sci., 248A, 117174
- 2. Santiago Vaque Aura et al: « Data analysis for electrolyte systems : a method illustrated on alkali halides in water » 2021, JCED, Vol 66, p 2976-2990
- 3. Yang, F et al. : « A Benchmark database for mixed solvent electrolyte solutions: consistency analysis using e-NRTL » 2022, I&EC Research, 61, 15576-15593
- 4. Yang, F. et al: Composition-dependence of relative static permittivity in ePPC-SAFT for mixed-solvent alkali halides, 2023, submitted to Fluid Phase Eq.